分组按日期数据帧:解决失踪时间段错误

问题描述:

我已经确定,如果不是自己创建的,困难的错误在一些不错的代码解决从这里StackOverflow上慷慨申请人收到几个星期前,我今天可以使用一些新的援助。分组按日期数据帧:解决失踪时间段错误

样本数据(下面称为对象eh):

ID  2013-03-20 2013-04-09 2013-04-11 2013-04-17 2013-04-25 2013-05-15 2013-05-24 2013-05-25 2013-05-26 
    5167f   0   0   0   0   0   0   0   0   0 
    1214m   0   0   0   0   0   0   0   0   0 
    1844f   0   0   0   0   0   0   0   0   0 
    2113m   0   0   0   0   0   0   0   0   0 
    2254m   0   0   0   0   0   0   0   0   0 
    2721f   0   0   0   0   0   0   0   0   0 
    3121f   0   0   0   0   0   0   0   0   0 
    3486f   0   0   0   0   0   0   0   0   0 
    3540f   0   0   0   0   0   0   0   0   0 
    4175m   0   0   0   0   0   0   0   0   0 

我需要能够组0s1s由其中它们各自的柱日期落在时间周期(例如,每隔1,2,3 ,或4周)。每当1在特定日期范围(Period)内至少下降一次,则在该Period0,否则)中针对该ID总结1

我开始用1个星期的例行总结作为一个例子。我的主要问题是,所产生的最终输出的时间序列"2013-03-20""2015-12-31"中缺少一些Periods总数可能1周。在该例子中的输出,其中,所述行是唯一IDs和列是用于唯一Periods,如何Periods 2,5,7,和9被丢失

说明:

1 3 4 6 8 10 11 12 13 14 
    0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 

这里是充分例程分组原始数据帧(请参阅上面共享的示例数据):

#Convert to data table from original data frame, eh 
    dt <- as.data.table(eh) 

    #One week summarized encounter histories 
    dt_merge <- data_frame(
     # Create a column showing the beginning date 
     Date1 = seq(from = ymd("2013-03-20"), to = ymd("2015-12-31"), by = "1 week")) %>% 
     # Create a column showing the end date of each period 
     mutate(Date2 = lead(Date1)) %>% 
     # Adjust Date1 
     mutate(Date1 = if_else(Date1 == ymd("2013-03-20"), Date1, Date1 + 1)) %>% 
     # Remove the last row 
     drop_na(Date2) %>% 
     # Create date list 
     mutate(Dates = map2(Date1, Date2, function(x, y){ seq(x, y, by = "day") })) %>% 
     unnest() %>% 
     # Create Group ID 
     mutate(RunID = group_indices_(., dots. = c("Date1", "Date2"))) %>% 
     # Create Period ID 
     mutate(Period = paste0(RunID)) %>% 
     # Add a column showing Month 
     mutate(Month = month(Dates)) %>% 
     # Add a column showing Year 
     mutate(Year = year(Dates)) %>% 
     # Add a column showing season 
     mutate(Season = case_when(
     Month %in% 3:5   ~ "Spring", 
     Month %in% 6:8   ~ "Summer", 
     Month %in% 9:11   ~ "Fall", 
     Month %in% c(12, 1, 2) ~ "Winter", 
     TRUE      ~ NA_character_ 
    )) %>% 
     # Combine Season and Year 
     mutate(SeasonYear = paste0(Season, Year)) %>% 
     select(-Date1, -Date2, -RunID) 
    dt2 <- dt %>% 
     # Reshape the data frame 
     gather(Date, Value, -ID) %>% 
     # Convert Date to date class 
     mutate(Date = ymd(Date)) %>% 
     # Join dt_merge 
     left_join(dt_merge, by = c("Date" = "Dates")) 
    one.week <- dt2 %>% 
     group_by(ID, Period) %>% 
     summarise(Value = max(Value)) %>% 
     spread(Period, Value) 

    #Finished product 
    one.week <- as.data.frame(one.week) 

    #Missing weeks 2, 5, 7, and 9... 
    one.week 

有人可以帮助我了解我哪里出错了吗?提前致谢!

〜AD

发生这种情况,因为这些周从eh数据丢失。例如,如果你看一下,使上涨2周日期:

dt_merge %>% 
    filter(Period == 2) 
#> # A tibble: 7 x 6 
#>  Dates Period Month Year Season SeasonYear 
#>  <date> <chr> <dbl> <dbl> <chr>  <chr> 
#> 1 2013-03-28  2  3 2013 Spring Spring2013 
#> 2 2013-03-29  2  3 2013 Spring Spring2013 
#> 3 2013-03-30  2  3 2013 Spring Spring2013 
#> 4 2013-03-31  2  3 2013 Spring Spring2013 
#> 5 2013-04-01  2  4 2013 Spring Spring2013 
#> 6 2013-04-02  2  4 2013 Spring Spring2013 
#> 7 2013-04-03  2  4 2013 Spring Spring2013 

你可以看到,没有这些日期都在eh列,其中跳过从2013年3月20日至2013-04- 09。因为你创造dt2,只有在eh日期(因此周)时使用left_join被保留。

这可以通过使用tidyr包中的complete()来更正ID和Date的缺失组合。

dt2 <- dt %>% 
    # Reshape the data frame 
    gather(Date, Value, -ID) %>% 
    # Convert Date to date class 
    mutate(Date = ymd(Date)) %>% 
    # Create missing ID/Date combinations 
    complete(ID, Date = dt_merge$Dates) %>% 
    # Join dt_merge 
    left_join(dt_merge, by = c("Date" = "Dates")) 
one.week <- dt2 %>% 
    mutate(Period = as.numeric(Period)) %>% 
    group_by(ID, Period) %>% 
    summarise(Value = max(Value, na.rm = TRUE)) %>% 
    spread(Period, Value) 
one.week 
#> # A tibble: 10 x 146 
#> # Groups: ID [10] 
#>  ID `1` `2` `3` `4` `5` `6` `7` `8` `9` `10` `11` 
#> * <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
#> 1 1214m  0 -Inf  0  0 -Inf  0 -Inf  0 -Inf  0 -Inf 
#> 2 1844f  0 -Inf  0  0 -Inf  0 -Inf  0 -Inf  0 -Inf 
#> 3 2113m  0 -Inf  0  0 -Inf  0 -Inf  0 -Inf  0 -Inf 
#> 4 2254m  0 -Inf  0  0 -Inf  0 -Inf  0 -Inf  0 -Inf 
#> 5 2721f  0 -Inf  0  0 -Inf  0 -Inf  0 -Inf  0 -Inf 
#> 6 3121f  0 -Inf  0  0 -Inf  0 -Inf  0 -Inf  0 -Inf 
#> 7 3486f  0 -Inf  0  0 -Inf  0 -Inf  0 -Inf  0 -Inf 
#> 8 3540f  0 -Inf  0  0 -Inf  0 -Inf  0 -Inf  0 -Inf 
#> 9 4175m  0 -Inf  0  0 -Inf  0 -Inf  0 -Inf  0 -Inf 
#> 10 5167f  0 -Inf  0  0 -Inf  0 -Inf  0 -Inf  0 -Inf 
#> # ... with 134 more variables: `12` <dbl>, `13` <dbl>, `14` <dbl>, 
#> # `15` <dbl>, `16` <dbl>, `17` <dbl>, `18` <dbl>, `19` <dbl>, 
#> # `20` <dbl>, `21` <dbl>, `22` <dbl>, `23` <dbl>, `24` <dbl>, 
#> # `25` <dbl>, `26` <dbl>, `27` <dbl>, `28` <dbl>, `29` <dbl>, 
#> # `30` <dbl>, `31` <dbl>, `32` <dbl>, `33` <dbl>, `34` <dbl>, 
#> # `35` <dbl>, `36` <dbl>, `37` <dbl>, `38` <dbl>, `39` <dbl>, 
#> # `40` <dbl>, `41` <dbl>, `42` <dbl>, `43` <dbl>, `44` <dbl>, 
#> # `45` <dbl>, `46` <dbl>, `47` <dbl>, `48` <dbl>, `49` <dbl>, 
#> # `50` <dbl>, `51` <dbl>, `52` <dbl>, `53` <dbl>, `54` <dbl>, 
#> # `55` <dbl>, `56` <dbl>, `57` <dbl>, `58` <dbl>, `59` <dbl>, 
#> # `60` <dbl>, `61` <dbl>, `62` <dbl>, `63` <dbl>, `64` <dbl>, 
#> # `65` <dbl>, `66` <dbl>, `67` <dbl>, `68` <dbl>, `69` <dbl>, 
#> # `70` <dbl>, `71` <dbl>, `72` <dbl>, `73` <dbl>, `74` <dbl>, 
#> # `75` <dbl>, `76` <dbl>, `77` <dbl>, `78` <dbl>, `79` <dbl>, 
#> # `80` <dbl>, `81` <dbl>, `82` <dbl>, `83` <dbl>, `84` <dbl>, 
#> # `85` <dbl>, `86` <dbl>, `87` <dbl>, `88` <dbl>, `89` <dbl>, 
#> # `90` <dbl>, `91` <dbl>, `92` <dbl>, `93` <dbl>, `94` <dbl>, 
#> # `95` <dbl>, `96` <dbl>, `97` <dbl>, `98` <dbl>, `99` <dbl>, 
#> # `100` <dbl>, `101` <dbl>, `102` <dbl>, `103` <dbl>, `104` <dbl>, 
#> # `105` <dbl>, `106` <dbl>, `107` <dbl>, `108` <dbl>, `109` <dbl>, 
#> # `110` <dbl>, `111` <dbl>, ... 

这里-Inf是,如果有在给定星期ID没有值返回。或者,也可以使用complete(ID, Date = dt_merge$Dates, fill = list(Value = 0))填充缺省值NA,以填充例如0。这将使任何不可观察的ID和日期组合的值变量0。

+0

这是它。非常感谢你! – Andrew