距离到多个不规则采样的事件熊猫
问题描述:
我具有不规则采样时间序列距离到多个不规则采样的事件熊猫
event
Time
2013-01-01 01:40:53.072 n
2013-01-01 01:41:25.563 e
2013-01-01 01:51:23.293 e
2013-01-01 01:57:14.168 e
2013-01-01 01:58:07.273 e
2013-01-01 02:05:36.250 e
2013-01-01 02:35:08.501 e
2013-01-01 02:37:36.498 e
2013-01-01 03:22:15.091 e
2013-01-01 03:35:58.140 e
2013-01-01 03:39:47.682 e
2013-01-01 04:22:18.756 e
2013-01-01 04:33:08.892 e
2013-01-01 04:43:17.985 n
2013-01-01 04:49:49.281 e
2013-01-01 05:10:26.957 e
2013-01-01 05:17:15.411 e
2013-01-01 06:11:15.033 e
2013-01-01 06:46:36.406 e
2013-01-01 07:26:00.488 e
,我想计算每个事件n
之间的累积经过的时间。 还有一个类似的问题(Pandas time series time between events),但由于不规则的timeindex,我无法使解决方案适应我的问题。我尝试使用df1['diff']=df1.groupby('event_bool')['event_time'].diff()
获得这样的事情:
event event_bool diff
Time
2013-01-01 01:40:53.072 n True NaT
2013-01-01 01:41:25.563 e False NaT
2013-01-01 01:51:23.293 e False 00:09:57.730000
2013-01-01 01:57:14.168 e False 00:05:50.875000
2013-01-01 01:58:07.273 e False 00:00:53.105000
2013-01-01 02:05:36.250 e False 00:07:28.977000
2013-01-01 02:35:08.501 e False 00:29:32.251000
2013-01-01 02:37:36.498 e False 00:02:27.997000
2013-01-01 03:22:15.091 e False 00:44:38.593000
2013-01-01 03:35:58.140 e False 00:13:43.049000
2013-01-01 03:39:47.682 e False 00:03:49.542000
2013-01-01 04:22:18.756 e False 00:42:31.074000
2013-01-01 04:33:08.892 e False 00:10:50.136000
2013-01-01 04:43:17.985 n True NaT
2013-01-01 04:49:49.281 e False 00:16:40.389000
2013-01-01 05:10:26.957 e False 00:20:37.676000
2013-01-01 05:17:15.411 e False 00:06:48.454000
2013-01-01 06:11:15.033 e False 00:53:59.622000
2013-01-01 06:46:36.406 e False 00:35:21.373000
2013-01-01 07:26:00.488 e False 00:39:24.082000
但是我有以下的未解决问题:
- 没有为
n
后的第一个事件e
在NAT。结果应该是'00:00:32.491000`` - Ho会累计累计
n
事件之间的经过时间?
答
让我们尝试以下操作:
df = df.reset_index()
df_out = pd.concat([DF,df.where(DF [ '事件'] == 'E')dropna()[ '时间' ]为.diff()重命名( '差异')],轴= 1)
df_out = pd.concat([df,df['Time'].diff().rename('diff').mask(df['event'] == 'n')],axis=1)
df_out['cum diff'] = df_out.groupby((df_out.event == 'n').cumsum())['diff'].transform(lambda x: x.fillna(0).cumsum())
df_out = df_out.set_index('Time')
更新输出:
Time event diff cum diff
0 2013-01-01 01:40:53.072 n NaT 00:00:00
1 2013-01-01 01:41:25.563 e 00:00:32.491000 00:00:32.491000
2 2013-01-01 01:51:23.293 e 00:09:57.730000 00:10:30.221000
3 2013-01-01 01:57:14.168 e 00:05:50.875000 00:16:21.096000
4 2013-01-01 01:58:07.273 e 00:00:53.105000 00:17:14.201000
5 2013-01-01 02:05:36.250 e 00:07:28.977000 00:24:43.178000
6 2013-01-01 02:35:08.501 e 00:29:32.251000 00:54:15.429000
7 2013-01-01 02:37:36.498 e 00:02:27.997000 00:56:43.426000
8 2013-01-01 03:22:15.091 e 00:44:38.593000 01:41:22.019000
9 2013-01-01 03:35:58.140 e 00:13:43.049000 01:55:05.068000
10 2013-01-01 03:39:47.682 e 00:03:49.542000 01:58:54.610000
11 2013-01-01 04:22:18.756 e 00:42:31.074000 02:41:25.684000
12 2013-01-01 04:33:08.892 e 00:10:50.136000 02:52:15.820000
13 2013-01-01 04:43:17.985 n NaT 00:00:00
14 2013-01-01 04:49:49.281 e 00:06:31.296000 00:06:31.296000
15 2013-01-01 05:10:26.957 e 00:20:37.676000 00:27:08.972000
16 2013-01-01 05:17:15.411 e 00:06:48.454000 00:33:57.426000
17 2013-01-01 06:11:15.033 e 00:53:59.622000 01:27:57.048000
18 2013-01-01 06:46:36.406 e 00:35:21.373000 02:03:18.421000
19 2013-01-01 07:26:00.488 e 00:39:24.082000 02:42:42.503000
答
不知道什么是NAT转换,但你可以使用一个补法,以取代所有空值的差异列。然后使用.sum()聚合方法。
答
首先我想到的解决方案使用厕所P,其变为如下所示:
times = []
for index, row in df.iterrows():
if(row['event'] == 'n'):
last = row['Time']
times.append(row['Time'] - last)
df['TimeNew'] = times
但后来,我看到对方的回答,我试图运行一些测试,看看哪个更好的表现。 我拼命地跑10次,每次方法,并采取了平均时间:
Lines | Loop method (s) | lambda method (s) |
---------------------------------------------
21 | 0,006838305 | 0,013882545 |
504 | 0,092648337 | 0,056006076 |
1000 | 0,169315854 | 0,097687499 |
10000 | 1,414376600 | 0,746927508 |
这里发布的答案其实更多的数据速度更快。 对于循环的正常表现,这并不令人惊奇。
不错!但是,我无法解决'diff'列的转变。第一个'e'应该是'00:00:32.491000'的差异,而不是NaT。第二个'n'之后的第一个'e'应该显示'2013-01-01 04:49:49.281 - 2013-01-01 04:43:17.985 = 00:06:31.296' – lorenzo
@lorenzo Oh ...我在问题中匹配你的输出。这看起来更好吗? –
工程就像一个魅力!谢谢@Scott – lorenzo