Matlab中的FFT和numpy/scipy给出了不同的结果
问题描述:
我想重新实现一个matlab工具箱。 他们在那边使用fft。 当我在相同的数据上执行相同的操作时,我得到了不同的结果,从matlab的结果。 只要看一看:Matlab中的FFT和numpy/scipy给出了不同的结果
MATLAB:
Msig =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
fft(Msig.')
Columns 1 through 4
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
Columns 5 through 6
1.0000 0
0 - 1.0000i 0
-1.0000 0
0 + 1.0000i 0
PYTHON:
Msig=
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 1., 0., 0.],
[ 0., 0., 0., 0.]])
np.fft.fft(Msig.transpose())
array([[ 0.0 +0.00000000e+00j, 0.0 +0.00000000e+00j,
0.0 +0.00000000e+00j, 0.0 +0.00000000e+00j,
0.0 +0.00000000e+00j, 0.0 +0.00000000e+00j],
[ 1.0 +0.00000000e+00j, -0.5 +8.66025404e-01j,
-0.5 -8.66025404e-01j, 1.0 -3.88578059e-16j,
-0.5 +8.66025404e-01j, -0.5 -8.66025404e-01j],
[ 0.0 +0.00000000e+00j, 0.0 +0.00000000e+00j,
0.0 +0.00000000e+00j, 0.0 +0.00000000e+00j,
0.0 +0.00000000e+00j, 0.0 +0.00000000e+00j],
[ 0.0 +0.00000000e+00j, 0.0 +0.00000000e+00j,
0.0 +0.00000000e+00j, 0.0 +0.00000000e+00j,
0.0 +0.00000000e+00j, 0.0 +0.00000000e+00j]])
尽我所能得到,如果NP的我惹参数(轴等)。 fft.fft()/ np.fft.fft2()/ np.fft.fftn()是相同的值,但移位。不幸的是,手动移位不是一个选项,因为Msig矩阵的大小和形状因输入参数而异。
你有任何线索如何解决这个问题,可能是什么原因?
答
Matlab在矩阵的列上应用fft,numpy在默认情况下在最后一个轴(行)上应用fft。你想:
>>> np.fft.fft(Msig.T, axis=0)
array([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.-1.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j]])
或
>>> np.fft.fft(Msig).T
array([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.-1.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j]])
+0
看起来就是这样!非常感谢我的爵士! – Chris 2011-12-30 18:36:23
即转仅仅是有一些不相关的原因,对不对? – Ali 2011-12-30 15:23:12