播放视频使用OpenCV库与kivy和Python换安卓Android上
尝试使用OpenCV库与kivy和Python换机器人 这里播放视频是我的尝试:播放视频使用OpenCV库与kivy和Python换安卓Android上
import os
import cv2
from kivy.app import App
from kivy.clock import Clock
from kivy.graphics.texture import Texture
from kivy.uix.boxlayout import BoxLayout
from kivy.uix.button import Button
from kivy.uix.image import Image
class KivyCamera(Image):
def __init__(self, capture=None, fps=0, **kwargs):
super(KivyCamera, self).__init__(**kwargs)
# self.capture = cv2.VideoCapture("/sdcard2/python-apk/2.mp4")
print "file path exist :" + str(os.path.exists("/sdcard2/python-apk/1.mkv"))
self.capture = cv2.VideoCapture("/sdcard2/python-apk/1.mkv")
Clock.schedule_interval(self.update, 1.0/fps)
def update(self, dt):
ret, frame = self.capture.read()
print str(os.listdir('/sdcard2/'))
if ret:
# convert it to texture
buf1 = cv2.flip(frame, 0)
buf = buf1.tostring()
image_texture = Texture.create(size=(frame.shape[1], frame.shape[0]), colorfmt='bgr')
image_texture.blit_buffer(buf, colorfmt='bgr', bufferfmt='ubyte')
# display image from the texture
self.texture = image_texture
class CamApp(App):
def build(self):
self.my_camera = KivyCamera(fps=30)
self.box = BoxLayout(orientation='vertical')
btn1 = Button(text="Hello")
self.box.add_widget(btn1)
# l = Label(text=cv2.__version__, font_size=150)
# self.box.add_widget(l)
self.box.add_widget(self.my_camera)
return self.box
def on_stop(self):
# without this, app will not exit even if the window is closed
# self.capture.release()
pass
def on_pause(self):
return True
if __name__ == '__main__':
CamApp().run()
,并在推土机的.spec文件
# (list) Source files to include (let empty to include all the files)
source.include_exts = py,png,jpg,kv,atlas,zip,mp4
# (list) Application requirements
requirements = plyer,kivy,opencv,numpy,pyjnius,ffmpeg, sqlite3, openssl
我尝试使用OpenCV的cv2.VideoCapture()方法来播放视频,上面的程序在桌面上做工精细,但当我建立APK使用bulldozer
并在android手机上运行应用程序我只得到白色屏幕。我尝试播放.mp4
或.mkv
格式,但在这两种情况下,我都会看到一个白色屏幕。我做错了什么或我的错误在哪里?
这里是我的日志文件:
Log File
类似的问题:
你不能在android上使用python opencv,因为它是为Windows/Linux机器构建的。如果您想在android上使用opencv操作视频,您可以使用official android opencv库,compileopencv用于手臂设备或使用JavaCV。
这里是一个使用官方android opencv库的例子。这个例子识别面孔相机饲料
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import org.opencv.android.BaseLoaderCallback;
import org.opencv.android.CameraBridgeViewBase.CvCameraViewFrame;
import org.opencv.android.LoaderCallbackInterface;
import org.opencv.android.OpenCVLoader;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.android.CameraBridgeViewBase;
import org.opencv.android.CameraBridgeViewBase.CvCameraViewListener2;
import org.opencv.objdetect.CascadeClassifier;
import org.opencv.imgproc.Imgproc;
import android.app.Activity;
import android.content.Context;
import android.os.Bundle;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;
import android.view.WindowManager;
public class FdActivity extends Activity implements CvCameraViewListener2 {
private static final String TAG = "OCVSample::Activity";
private static final Scalar FACE_RECT_COLOR = new Scalar(0, 255, 0, 255);
public static final int JAVA_DETECTOR = 0;
public static final int NATIVE_DETECTOR = 1;
private MenuItem mItemFace50;
private MenuItem mItemFace40;
private MenuItem mItemFace30;
private MenuItem mItemFace20;
private MenuItem mItemType;
private Mat mRgba;
private Mat mGray;
private File mCascadeFile;
private CascadeClassifier mJavaDetector;
private DetectionBasedTracker mNativeDetector;
private int mDetectorType = JAVA_DETECTOR;
private String[] mDetectorName;
private float mRelativeFaceSize = 0.2f;
private int mAbsoluteFaceSize = 0;
private CameraBridgeViewBase mOpenCvCameraView;
private BaseLoaderCallback mLoaderCallback = new BaseLoaderCallback(this) {
@Override
public void onManagerConnected(int status) {
switch (status) {
case LoaderCallbackInterface.SUCCESS:
{
Log.i(TAG, "OpenCV loaded successfully");
// Load native library after(!) OpenCV initialization
System.loadLibrary("detection_based_tracker");
try {
// load cascade file from application resources
InputStream is = getResources().openRawResource(R.raw.lbpcascade_frontalface);
File cascadeDir = getDir("cascade", Context.MODE_PRIVATE);
mCascadeFile = new File(cascadeDir, "lbpcascade_frontalface.xml");
FileOutputStream os = new FileOutputStream(mCascadeFile);
byte[] buffer = new byte[4096];
int bytesRead;
while ((bytesRead = is.read(buffer)) != -1) {
os.write(buffer, 0, bytesRead);
}
is.close();
os.close();
mJavaDetector = new CascadeClassifier(mCascadeFile.getAbsolutePath());
if (mJavaDetector.empty()) {
Log.e(TAG, "Failed to load cascade classifier");
mJavaDetector = null;
} else
Log.i(TAG, "Loaded cascade classifier from " + mCascadeFile.getAbsolutePath());
mNativeDetector = new DetectionBasedTracker(mCascadeFile.getAbsolutePath(), 0);
cascadeDir.delete();
} catch (IOException e) {
e.printStackTrace();
Log.e(TAG, "Failed to load cascade. Exception thrown: " + e);
}
mOpenCvCameraView.enableView();
} break;
default:
{
super.onManagerConnected(status);
} break;
}
}
};
public FdActivity() {
mDetectorName = new String[2];
mDetectorName[JAVA_DETECTOR] = "Java";
mDetectorName[NATIVE_DETECTOR] = "Native (tracking)";
Log.i(TAG, "Instantiated new " + this.getClass());
}
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
Log.i(TAG, "called onCreate");
super.onCreate(savedInstanceState);
getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
setContentView(R.layout.face_detect_surface_view);
mOpenCvCameraView = (CameraBridgeViewBase) findViewById(R.id.fd_activity_surface_view);
mOpenCvCameraView.setCvCameraViewListener(this);
}
@Override
public void onPause()
{
super.onPause();
if (mOpenCvCameraView != null)
mOpenCvCameraView.disableView();
}
@Override
public void onResume()
{
super.onResume();
if (!OpenCVLoader.initDebug()) {
Log.d(TAG, "Internal OpenCV library not found. Using OpenCV Manager for initialization");
OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_3_0_0, this, mLoaderCallback);
} else {
Log.d(TAG, "OpenCV library found inside package. Using it!");
mLoaderCallback.onManagerConnected(LoaderCallbackInterface.SUCCESS);
}
}
public void onDestroy() {
super.onDestroy();
mOpenCvCameraView.disableView();
}
public void onCameraViewStarted(int width, int height) {
mGray = new Mat();
mRgba = new Mat();
}
public void onCameraViewStopped() {
mGray.release();
mRgba.release();
}
public Mat onCameraFrame(CvCameraViewFrame inputFrame) {
mRgba = inputFrame.rgba();
mGray = inputFrame.gray();
if (mAbsoluteFaceSize == 0) {
int height = mGray.rows();
if (Math.round(height * mRelativeFaceSize) > 0) {
mAbsoluteFaceSize = Math.round(height * mRelativeFaceSize);
}
mNativeDetector.setMinFaceSize(mAbsoluteFaceSize);
}
MatOfRect faces = new MatOfRect();
if (mDetectorType == JAVA_DETECTOR) {
if (mJavaDetector != null)
mJavaDetector.detectMultiScale(mGray, faces, 1.1, 2, 2, // TODO: objdetect.CV_HAAR_SCALE_IMAGE
new Size(mAbsoluteFaceSize, mAbsoluteFaceSize), new Size());
}
else if (mDetectorType == NATIVE_DETECTOR) {
if (mNativeDetector != null)
mNativeDetector.detect(mGray, faces);
}
else {
Log.e(TAG, "Detection method is not selected!");
}
Rect[] facesArray = faces.toArray();
for (int i = 0; i < facesArray.length; i++)
Imgproc.rectangle(mRgba, facesArray[i].tl(), facesArray[i].br(), FACE_RECT_COLOR, 3);
return mRgba;
}
@Override
public boolean onCreateOptionsMenu(Menu menu) {
Log.i(TAG, "called onCreateOptionsMenu");
mItemFace50 = menu.add("Face size 50%");
mItemFace40 = menu.add("Face size 40%");
mItemFace30 = menu.add("Face size 30%");
mItemFace20 = menu.add("Face size 20%");
mItemType = menu.add(mDetectorName[mDetectorType]);
return true;
}
@Override
public boolean onOptionsItemSelected(MenuItem item) {
Log.i(TAG, "called onOptionsItemSelected; selected item: " + item);
if (item == mItemFace50)
setMinFaceSize(0.5f);
else if (item == mItemFace40)
setMinFaceSize(0.4f);
else if (item == mItemFace30)
setMinFaceSize(0.3f);
else if (item == mItemFace20)
setMinFaceSize(0.2f);
else if (item == mItemType) {
int tmpDetectorType = (mDetectorType + 1) % mDetectorName.length;
item.setTitle(mDetectorName[tmpDetectorType]);
setDetectorType(tmpDetectorType);
}
return true;
}
private void setMinFaceSize(float faceSize) {
mRelativeFaceSize = faceSize;
mAbsoluteFaceSize = 0;
}
private void setDetectorType(int type) {
if (mDetectorType != type) {
mDetectorType = type;
if (type == NATIVE_DETECTOR) {
Log.i(TAG, "Detection Based Tracker enabled");
mNativeDetector.start();
} else {
Log.i(TAG, "Cascade detector enabled");
mNativeDetector.stop();
}
}
}
public class DetectionBasedTracker
{
public DetectionBasedTracker(String cascadeName, int minFaceSize) {
mNativeObj = nativeCreateObject(cascadeName, minFaceSize);
}
public void start() {
nativeStart(mNativeObj);
}
public void stop() {
nativeStop(mNativeObj);
}
public void setMinFaceSize(int size) {
nativeSetFaceSize(mNativeObj, size);
}
public void detect(Mat imageGray, MatOfRect faces) {
nativeDetect(mNativeObj, imageGray.getNativeObjAddr(), faces.getNativeObjAddr());
}
public void release() {
nativeDestroyObject(mNativeObj);
mNativeObj = 0;
}
private long mNativeObj = 0;
private static native long nativeCreateObject(String cascadeName, int minFaceSize);
private static native void nativeDestroyObject(long thiz);
private static native void nativeStart(long thiz);
private static native void nativeStop(long thiz);
private static native void nativeSetFaceSize(long thiz, int size);
private static native void nativeDetect(long thiz, long inputImage, long faces);
}
}
如果你想操作一个文件从一个文件,那么你必须使用的ffmpeg作为OpenCV进行Android不来与视频解码器,或者你可以通过自己拥有的时间使用JavaFv,它为ffmpeg和opencv提供了开箱即用的包装。
不,我们可以使用opencv与python for android我们必须编写食谱。并检查python的Android目录'''https:// github.com/kivy/python-for-android/tree/master/pythonforandroid'''''' – Kallz
“https://stackoverflow.com/questions/36252818/kivy -opencv-android“看到这里的例子 – Kallz
好的,我明白了。但opencv-python不能用于python-for-android,因为opencv-python是用windows/linux机器的本地代码构建的。 –
Downvote有任何理由......请告诉我任何理由。 – Kallz
有什么理由不使用视频小部件和'ffpyplayer'提供程序? –
@MikhailGerasimov用于opencv的进一步处理 – Kallz