python igraph在fast_community.c错误:553
问题描述:
首先,感谢阅读并可能对此作出响应。python igraph在fast_community.c错误:553
现在的问题: 我在Python 2.7版,并且我得到试图找到使用fastgreedy算法在我的图形社区,当这个错误:
---------------------------------------------------------------------------
InternalError Traceback (most recent call last)
<ipython-input-180-3b8456851658> in <module>()
----> 1 dendrogram = g_summary.community_fastgreedy(weights=edge_frequency.values())
/usr/local/lib/python2.7/site-packages/igraph/__init__.pyc in community_fastgreedy(self, weights)
959 in very large networks. Phys Rev E 70, 066111 (2004).
960 """
--> 961 merges, qs = GraphBase.community_fastgreedy(self, weights)
962
963 # qs may be shorter than |V|-1 if we are left with a few separated
InternalError: Error at fast_community.c:553: fast-greedy community finding works only on graphs without multiple edges, Invalid value
这是我建立了我的图表:
import igraph as ig
vertices = words #about 600 words from a number of news articles: ['palestine', 'israel', 'hamas, 'nasa', 'mercury', 'water', ...]
gen = ig.UniqueIdGenerator()
[gen[word] for word in vertices] #generate word-to-integer mapping as each edge has to be between integer ids (words)
edges = []
for ind in xrange(articles.shape[0]): # articles is a pandas dataframe; each row corresponds to an article; one column is 'top_words' which includes the top few words of each article. The above list *words* is the unique union set of top_words for all articles.
words_i = articles['top_words'].values[ind] # for one article, this looks like ['palestine','israel','hamas']
edges.extend([(gen[x[0]],gen[x[1]]) for x in combinations(words_i,2)]) #basically there is an edge for each pair of top_words in a given article. For the example article above, we get edges between israel-palestine, israel-hamas, palestine-hamas.
unique_edges = list(set(edges))
unique_edge_frequency = {}
for e in unique_edges:
unique_edge_frequency[e] = edges.count(e)
g = ig.Graph(vertex_attrs={"label": vertices}, edges=unique_edges, directed=False)
g.es['width'] = np.asarray([unique_edge_frequency[e] for e in unique_edge_frequency.keys()])*1.0/max(unique_edge_frequency.values())
而这正是引发错误:
dendrogram = g.community_fastgreedy(weights=g.es['width'])
我在做什么错了?
答
您的图包含多个边(即同一对节点之间有多个边)。快速贪婪的社区检测在这样的图表上不起作用;您必须使用g.simplify()
将多个边折叠为单个边。
它似乎也正在试图根据同一对顶点之间有多少边缘来设置边缘的"width"
属性。如果不建立unique_edges
然后unique_edge_frequency
的,你可以简单地这样做:
g = Graph(edges, directed=False)
g.es["width"] = 1
g.simplify(combine_edges={ "width": "sum" })
这只是第一次创建具有多个边的图,然后宽度为1的分配给每个边缘,终于崩溃了多条边成单同时总结它们的宽度。
一如既往的优雅! – JRun