等级相关,在Python
我的数据是一组Ñ观察到对与它们的频率,即,每对(X 我,Y 我)有对应一些ķ沿我,次的数目(×我,Y 我)进行了观察。理想情况下,我想这两者进行计算Kendall的tau和Spearman的Rho为集这些对所有的副本,它由ķ + K + ... + K ň双。的问题是,ķ + K 2 + ... + K Ñ,观测的总数量,是巨大的,这样的数据结构将不适合在存储器中。等级相关,在Python
当然,我想有关分配的频率我个对,ķ我 /(K 1 + K 2 + ... + K Ñ),作为其权重和计算权重集—的等级相关性,但我找不到任何工具。在我遇到的加权等级相关品种(例如,scipy.stats.weightedtau)中,权重表示等级而非配对的重要性,这与我的原因无关。皮尔森的似乎有我需要的权重选项,但它不符合我的目的,因为 x和 y无处与线性相关。我想知道我是否错过了关于加权数据点的广义相关性的一些概念。
到目前为止,我得到的唯一想法是缩小ķ,K ,...,通过一些常见的因素Çķñ,使比例数的我个对拷贝是 [K 我/C](这里 []是舍入演算器,因为我们需要使每一对拷贝整数)。通过选择Ç使得 [K/C] + [K/C] + ... + [K Ñ/C]对可以放入存储器中,我们然后可以计算所得到的组的相关系数tau和rho。然而,ķ我和ķĴ可以通过许多数量级不同,所以Ç可以显著大一些ķ我因此四舍五入ķ我/C可能会导致信息丢失。
UPD:一个可以计算斯皮尔曼的Rho具有p值沿着具有指定频率的权重,如下一个数据集:
def frequency_pearsonr(data, frequencies):
"""
Calculates Pearson's r between columns (variables), given the
frequencies of the rows (observations).
:param data: 2-D array with data
:param frequencies: 1-D array with frequencies
:return: 2-D array with pairwise correlations,
2-D array with pairwise p-values
"""
df = frequencies.sum() - 2
Sigma = np.cov(data.T, fweights=frequencies)
sigma_diag = Sigma.diagonal()
Sigma_diag_pairwise_products = np.multiply.outer(sigma_diag, sigma_diag)
# Calculate matrix with pairwise correlations.
R = Sigma/np.sqrt(Sigma_diag_pairwise_products)
# Calculate matrix with pairwise t-statistics. Main diagonal should
# get 1/0 = inf.
with np.errstate(divide='ignore'):
T = R/np.sqrt((1 - R * R)/df)
# Calculate matrix with pairwise p-values.
P = 2 * stats.t.sf(np.abs(T), df)
return R, P
def frequency_rank(data, frequencies):
"""
Ranks 1-D data array, given the frequency of each value. Same
values get same "averaged" ranks. Array with ranks is shaped to
match the input data array.
:param data: 1-D array with data
:param frequencies: 1-D array with frequencies
:return: 1-D array with ranks
"""
s = 0
ranks = np.empty_like(data)
# Compute rank for each unique value.
for value in sorted(set(data)):
index_grid = np.ix_(data == value)
# Find total frequency of the value.
frequency = frequencies[index_grid].sum()
ranks[index_grid] = s + 0.5 * (frequency + 1)
s += frequency
return ranks
def frequency_spearmanrho(data, frequencies):
"""
Calculates Spearman's rho between columns (variables), given the
frequencies of the rows (observations).
:param data: 2-D array with data
:param frequencies: 1-D array with frequencies
:return: 2-D array with pairwise correlations,
2-D array with pairwise p-values
"""
# Rank the columns.
ranks = np.empty_like(data)
for i, data_column in enumerate(data.T):
ranks[:, i] = frequency_rank(data_column, frequencies)
# Compute Pearson's r correlation and p-values on the ranks.
return frequency_pearsonr(ranks, frequencies)
# Columns are variables and rows are observations, whose frequencies
# are specified.
data_col1 = np.array([1, 0, 1, 0, 1])
data_col2 = np.array([.67, .25, .75, .2, .6])
data_col3 = np.array([.1, .3, .8, .3, .2])
data = np.array([data_col1, data_col2, data_col3]).T
frequencies = np.array([2, 4, 1, 3, 2])
# Same data, but with observations (rows) actually repeated instead of
# their frequencies being specified.
expanded_data_col1 = np.array([1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1])
expanded_data_col2 = np.array([.67, .67, .25, .25, .25, .25, .75, .2, .2, .2, .6, .6])
expanded_data_col3 = np.array([.1, .1, .3, .3, .3, .3, .8, .3, .3, .3, .2, .2])
expanded_data = np.array([expanded_data_col1, expanded_data_col2, expanded_data_col3]).T
# Compute Spearman's rho for data in both formats, and compare.
frequency_Rho, frequency_P = frequency_spearmanrho(data, frequencies)
Rho, P = stats.spearmanr(expanded_data)
print(frequency_Rho - Rho)
print(frequency_P - P)
上面的具体实施例表明,这两种方法产生相同的相关性和相同的p值:
[[ 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[ 1.11022302e-16 0.00000000e+00 -5.55111512e-17]
[ 0.00000000e+00 -5.55111512e-17 0.00000000e+00]]
[[ 0.00000000e+00 -1.35525272e-19 4.16333634e-17]
[ -9.21571847e-19 0.00000000e+00 -5.55111512e-17]
[ 4.16333634e-17 -5.55111512e-17 0.00000000e+00]]
计算Kendall的tau,由保罗建议的做法,有效。您不必将排序数组的索引作为等级,但未排序数组的索引同样正常(如加权tau中的示例所示)。权重也不需要标准化。
定期(未加权)Kendall的tau(在 “扩展” 数据集):
stats.kendalltau([0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
[.25, .25, .25, .25, .2, .2, .2, .667, .667, .75, .6, .6])
KendalltauResult(correlation=0.7977240352174656, pvalue=0.0034446936330652677)
加权Kendall的tau(与发生次数的数据集作为权重):
stats.weightedtau([1, 0, 1, 0, 1],
[.667, .25, .75, .2, .6],
rank=False,
weigher=lambda r: [2, 4, 1, 3, 2][r],
additive=False)
WeightedTauResult(correlation=0.7977240352174656, pvalue=nan)
现在,由于weightedtau实现的特殊性,p值永远不会被计算。我们可以用最初提供的缩小事件的技巧来近似p值,但我非常感谢其他方法。根据可用的内存量决定算法行为对我来说看起来很痛苦。
要计算加权Spearman秩相关系数,你可以简单地预排名的x和y的值,然后推到那些'pearsonr'(与你一起的权重),以获得加权斯皮尔曼的Rho退了出去。 – Paul
不确定以下方法的统计有效性,但从技术角度来看,您可以简单地将(预先计算的)字典映射等级封装到函数中的标准化频率中,并将其作为“称重器”传递给“weightedtau”。 – Paul
让我得到你的问题直,ķ + K + ... + K ň对观测是太大,无法在RAM中。你能计算一个随机样本的等级相关性,增加样本量,重复这个过程直到估计的等级相关性低于某个阈值水平? –