熊猫CONCAT DataFrames - 保持指数
问题描述:
的原始顺序
我想Concat的2个dataframes:熊猫CONCAT DataFrames - 保持指数
df2:
CU Pmt 2017-02-01
h b 15
h d 12
h a 13
和DF1:
CU Pmt 'Total/Max/Min'
h b 20
h d 23
h a 22
a b 16
a d 13
a a 14
这样DF3:
CU Pmt 2017-02-01 2017-02-02
h b 15 20
h d 12 23
h a 13 22
a b NaN 16
a d NaN 13
a a Nan 14
我对于
使用多指数index_col = [0,1]这是我有:
date = '2017-02-02'
df1 = pd.read_csv(r'Data\2017-02\2017-02-02\Aggregated\Aggregated_Daily_All.csv', usecols=['CU', 'Parameters', 'Total/Max/Min'], index_col =[0,1])
df1 = df1.rename(columns = {'Total/Max/Min':date})
df2 = pd.read_csv(r'Data\2017-02\MonthlyData\February2017.csv', index_col = [0,1])
df3 = pd.concat([df2, df1], axis=1)
df3.to_csv(r'Data\2017-02\MonthlyData\February2017.csv')
然而,DF3是走出来的:
CU Pmt 2017-02-01 2017-02-02
a a NaN 14
a b NaN 16
a d Nan 13
h a 13 22
h b 15 20
h d 12 23
其中有按字母顺序排列CU
和Pmt
(这两个指标列)。如何保持原始订单,以便为新日期添加的所有新索引都添加到底部?
答
你可以试试reindex
如果df1.index
值包含的df2.index
值:
df3 = pd.concat([df2, df1], axis=1).reindex(df1.index)
print (df3)
2017-02-01 'Total/Max/Min'
CU Pmt
h b 15.0 20
d 12.0 23
a 13.0 22
a b NaN 16
d NaN 13
a NaN 14