合并和转化两只大熊猫dataframes
问题描述:
我有两只大熊猫的数据帧:合并和转化两只大熊猫dataframes
一个格式为:
type sum date
x1 12 01/01/12
x2 10 01/01/12
x3 8 01/01/12
x1 13 02/01/12
x2 12 02/01/12
x3 55 02/01/12
x1 11 03/01/12
x2 10 03/01/12
x3 8 03/01/12
,另一个在格式
total date
122 01/01/12
133 02/01/12
144 03/01/12
什么是最简单的方法结合这些,以便我可以得到以下输出:
date x1 x2 x3 total
01/01/12 12 10 8 122
02/01/12 13 12 55 133
03/01/12 11 10 8 144
我已经尝试了很多功能,变得非常混乱,非常迅速,似乎没有工作。
任何帮助将不胜感激。
答
您可以使用pivot
与df1
,set_index
与df2
然后concat
它们在一起。最后,你可以删除columns name
和reset_index
:
print df1.pivot(index='date', columns='type', values='sum')
type x1 x2 x3
date
2012-01-01 12 10 8
2012-02-01 13 12 55
2012-03-01 11 10 8
print df2.set_index('date')
total
date
2012-01-01 122
2012-02-01 133
2012-03-01 144
df = pd.concat([df1.pivot(index='date', columns='type', values='sum'),
df2.set_index('date')], axis=1)
df.columns.name = None
df = df.reset_index()
print df
date x1 x2 x3 total
0 2012-01-01 12 10 8 122
1 2012-02-01 13 12 55 133
2 2012-03-01 11 10 8 144
也许之前你可以转换列date
to_datetime
都DataFrames
的:
df1['date'] = pd.to_datetime(df1['date'])
df2['date'] = pd.to_datetime(df2['date'])
print df1
type sum date
0 x1 12 2012-01-01
1 x2 10 2012-01-01
2 x3 8 2012-01-01
3 x1 13 2012-02-01
4 x2 12 2012-02-01
5 x3 55 2012-02-01
6 x1 11 2012-03-01
7 x2 10 2012-03-01
8 x3 8 2012-03-01
print df2
total date
0 122 2012-01-01
1 133 2012-02-01
2 144 2012-03-01
+0
谢谢你,就是我在找的东西。 –
+0
并且不要忘记[接受](http://meta.stackexchange.com/questions/5234/how-does-accepting-an-answer-work)的答案。谢谢。 – jezrael
,欢迎到堆栈溢出。你可以检查[tour](http://stackoverflow.com/tour)。 – jezrael