下一条记录的索引

问题描述:

我有一个自行车轨迹的样本数据集。我的目标是要弄清楚,平均的时间量,在访问B站间的失误下一条记录的索引

到目前为止,我已经能够简单地订购数据集:

test[order(test$starttime, decreasing = FALSE),] 

,并找到哪里start_stationend_station相等B.

which(test$start_station == 'B') 
which(test$end_station == 'B') 

接下来的部分是,我遇到麻烦了行索引。为了计算的时间流逝中,当自行车是在站B之间,我们必须在那里start_station = "B"(自行车叶)之间的difftime()下一个出现的记录其中end_station= "B"即使记录恰好是在同一行(见第6行)。

用下面的数据集,我们知道,自行车7:30:0016:00:00外站B和18:00:00以30分钟18:30:00外站的B,19:00:00 210之间分钟,22:30:00外站的B,之间花了510分钟这平均值为250 minutes.

如何使用difftime()在R中重现此输出?

> test 
    bikeid start_station   starttime end_station    endtime 
1  1    A 2017-09-25 01:00:00   B 2017-09-25 01:30:00 
2  1    B 2017-09-25 07:30:00   C 2017-09-25 08:00:00 
3  1    C 2017-09-25 10:00:00   A 2017-09-25 10:30:00 
4  1    A 2017-09-25 13:00:00   C 2017-09-25 13:30:00 
5  1    C 2017-09-25 15:30:00   B 2017-09-25 16:00:00 
6  1    B 2017-09-25 18:00:00   B 2017-09-25 18:30:00 
7  1    B 2017-09-25 19:00:00   A 2017-09-25 19:30:00 
8  1    А 2017-09-25 20:00:00   C 2017-09-25 20:30:00 
9  1    C 2017-09-25 22:00:00   B 2017-09-25 22:30:00 
10  1    B 2017-09-25 23:00:00   C 2017-09-25 23:30:00 

这里是样本数据:

> dput(test) 
structure(list(bikeid = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1), start_station = c("A", 
"B", "C", "A", "C", "B", "B", "А", "C", "B"), starttime = structure(c(1506315600, 
1506339000, 1506348000, 1506358800, 1506367800, 1506376800, 1506380400, 
1506384000, 1506391200, 1506394800), class = c("POSIXct", "POSIXt" 
), tzone = ""), end_station = c("B", "C", "A", "C", "B", "B", 
"A", "C", "B", "C"), endtime = structure(c(1506317400, 1506340800, 
1506349800, 1506360600, 1506369600, 1506378600, 1506382200, 1506385800, 
1506393000, 1506396600), class = c("POSIXct", "POSIXt"), tzone = "")), .Names = c("bikeid", 
"start_station", "starttime", "end_station", "endtime"), row.names = c(NA, 
-10L), class = "data.frame") 
+2

第一步将转换为长格式,如'library(data.table); mtest = melt(setDT(test),id =“bikeid”,meas = patterns(“_ station”,“time”), variable.name =“event”,value.name = c(“station”,“time” )); (factor:(1:2),c(“start”,“end”)),on =。(event),event:= i.V2]; 'setkey(mtest,bikeid,time)',但我不确定之后的最佳方式。 – Frank

这将计算与要求在它发生的顺序不同,但它不追加到data.frame

lapply(df1$starttime[df1$start_station == "B"], function(x, et) difftime(et[x < et][1], x, units = "mins"), et = df1$endtime[df1$end_station == "B"]) 

[[1]] 
Time difference of 510 mins 

[[2]] 
Time difference of 30 mins 

[[3]] 
Time difference of 210 mins 

[[4]] 
Time difference of NA mins 

要计算平均时间:

v1 <- sapply(df1$starttime[df1$start_station == "B"], function(x, et) difftime(et[x < et][1], x, units = "mins"), et = df1$endtime[df1$end_station == "B"]) 
mean(v1, na.rm = TRUE) 

[1] 250 
+0

谢谢,这个方法有效。你能简单地解释'function(x,et)'是如何工作的吗? –

+0

'lapply'允许将多个参数传递给函数。 'x'的值是'starttime',而'et'是函数之后定义的附加参数。这是为了使参数只定义一次,但可以在函数中使用两次。 – manotheshark

另一种可能性:

library(data.table) 
d <- setDT(test)[ , { 
    start = starttime[start_station == "B"] 
    end = endtime[end_station == "B"] 
    .(start = start, end = end, duration = difftime(end, start, units = "min")) 
} 
, by = .(trip = cumsum(start_station == "B"))] 
d 
# trip    start     end duration 
# 1: 0    <NA> 2017-09-25 01:30:00 NA mins 
# 2: 1 2017-09-25 07:30:00 2017-09-25 16:00:00 510 mins 
# 3: 2 2017-09-25 18:00:00 2017-09-25 18:30:00 30 mins 
# 4: 3 2017-09-25 19:00:00 2017-09-25 22:30:00 210 mins 
# 5: 4 2017-09-25 23:00:00    <NA> NA mins 


d[ , mean(duration, na.rm = TRUE)] 
# Time difference of 250 mins 

# or 
d[ , mean(as.integer(duration), na.rm = TRUE)] 
# [1] 250 

的数据由它通过1各自行车从“B”(by = cumsum(start_station == "B"))开始时间增加的计数器分组。