Pytorch项目中evaluation每次的运行结果不同如何解决
今天就跟大家聊聊有关Pytorch项目中evaluation每次的运行结果不同如何解决,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。
经过漫长的debug发现,在net architure中有dropout,如下(4):
(conv_block): Sequential( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU(inplace) (4): Dropout(p=0.5) (5): ReflectionPad2d((1, 1, 1, 1)) (6): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (7): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) )
在跑evaluation的时候,因为dropout的存在,每次运行会随机丢一些中间结果,从而导致最终结果有差异;
可以在evaluation过程中,使用eval() class强制丢掉random的内容,code如下:
self.fake_B = self.netG.eval().forward(self.real_A)
看完上述内容,你们对Pytorch项目中evaluation每次的运行结果不同如何解决有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注行业资讯频道,感谢大家的支持。