GLSL3切线空间坐标和法线贴图

问题描述:

首先,我必须道歉在这个问题上发布另一个问题(已经有很多了!)。我确实在寻找其他相关的问题和答案,但不幸的是他们中没有人向我展示解决方案。现在我绝望了! :DGLSL3切线空间坐标和法线贴图

值得一提的是,下面的代码给出了令人满意的'颠簸'效果。这似乎是错误的场景启发。

现场:死了简单!中心的立方体,围绕它旋转的光源(与地面平行)及以上。

我的做法是从我的基本光着色器开始,它给了我足够的输出(或者我认为!)。第一步是修改它在切线空间中进行计算,然后使用从纹理中提取的法线。

我想很好地评论的代码,但在短期我有两个问题

1)只做基本的照明(没有法线贴图),我希望来现场看完全一样,有或而无需用TBN矩阵将我的向量转换为切线空间。我错了吗?

2)为什么我得到不正确的启示?

一些截图给你一个想法(编辑) - 遵循LJ的评论,我不再总结法线和每个顶点/面的切线。有趣的是,它突出了这个问题(请参阅捕获,我已经标记了光线如何移动)。

基本上它是因为如果立方体旋转90度到左侧,或者,如如果光被图灵垂直代替正常映射水平

结果的:

Result with normal mapping

版本以简单的光:

Version with simple light

顶点着色器:

// Information about the light. 
// Here we care essentially about light.Position, which 
// is set to be something like vec3(cos(x)*9, 5, sin(x)*9) 
uniform Light_t Light; 

uniform mat4 W; // The model transformation matrix 
uniform mat4 V; // The camera transformation matrix 
uniform mat4 P; // The projection matrix 

in vec3 VS_Position; 
in vec4 VS_Color; 
in vec2 VS_TexCoord; 
in vec3 VS_Normal; 
in vec3 VS_Tangent; 

out vec3 FS_Vertex; 
out vec4 FS_Color; 
out vec2 FS_TexCoord; 
out vec3 FS_LightPos; 
out vec3 FS_ViewPos; 
out vec3 FS_Normal; 

// This method calculates the TBN matrix: 
// I'm sure it is not optimized vertex shader code, 
// to have this seperate method, but nevermind for now :) 
mat3 getTangentMatrix() 
{ 
    // Note: here I must say am a bit confused, do I need to transform 
    // with 'normalMatrix'? In practice, it seems to make no difference... 
    mat3 normalMatrix = transpose(inverse(mat3(W))); 
    vec3 norm = normalize(normalMatrix * VS_Normal); 
    vec3 tang = normalize(normalMatrix * VS_Tangent); 
    vec3 btan = normalize(normalMatrix * cross(VS_Normal, VS_Tangent)); 
    tang = normalize(tang - dot(tang, norm) * norm); 
    return transpose(mat3(tang, btan, norm)); 
} 

void main() 
{ 
    // Set the gl_Position and pass color + texcoords to the fragment shader 
    gl_Position = (P * V * W) * vec4(VS_Position, 1.0); 
    FS_Color = VS_Color; 
    FS_TexCoord = VS_TexCoord; 

    // Now here we start: 
    // This is where supposedly, multiplying with the TBN should not 
    // change anything to the output, as long as I apply the transformation 
    // to all of them, or none. 
    // Typically, removing the 'TBN *' everywhere (and not using the normal 
    // texture later in the fragment shader) is exactly the code I use for 
    // my basic light shader. 
    mat3 TBN = getTangentMatrix(); 
    FS_Vertex = TBN * (W * vec4(VS_Position, 1)).xyz; 
    FS_LightPos = TBN * Light.Position; 
    FS_ViewPos = TBN * inverse(V)[3].xyz; 

    // This line is actually not needed when using the normal map: 
    // I keep the FS_Normal variable for comparison purposes, 
    // when I want to switch to my basic light shader effect. 
    // (see later in fragment shader) 
    FS_Normal = TBN * normalize(transpose(inverse(mat3(W))) * VS_Normal); 
} 

而片段着色器:

struct Textures_t 
{ 
    int SamplersCount; 
    sampler2D Samplers[4]; 
}; 

struct Light_t 
{ 
    int Active; 
    float Ambient; 
    float Power; 
    vec3 Position; 
    vec4 Color; 
}; 

uniform mat4 W; 
uniform mat4 V; 
uniform Textures_t Textures; 
uniform Light_t Light; 

in vec3 FS_Vertex; 
in vec4 FS_Color; 
in vec2 FS_TexCoord; 
in vec3 FS_LightPos; 
in vec3 FS_ViewPos; 
in vec3 FS_Normal; 

out vec4 frag_Output; 

vec4 getPixelColor() 
{ 
    return Textures.SamplersCount >= 1 
     ? texture2D(Textures.Samplers[0], FS_TexCoord) 
     : FS_Color; 
} 

vec3 getTextureNormal() 
{ 
    // FYI: the normal texture is always at index 1 
    vec3 bump = texture(Textures.Samplers[1], FS_TexCoord).xyz; 
    bump = 2.0 * bump - vec3(1.0, 1.0, 1.0); 
    return normalize(bump); 
} 

vec4 getLightColor() 
{ 
    // This is the one line that changes between my basic light shader 
    // and the normal mapping one: 
    // - If I don't do 'TBN *' earlier and use FS_Normal here, 
    // the enlightenment seems fine (see second screenshot) 
    // - If I do multiply by TBN (including on FS_Normal), I would expect 
    // the same result as without multiplying ==> not the case: it looks 
    // very similar to the result with normal mapping 
    // (just has no bumpy effect of course) 
    // - If I use the normal texture (along with TBN of course), then I get 
    // the result you see in the first screenshot. 
    vec3 N = getTextureNormal(); // Instead of 'normalize(FS_Normal);' 

    // Everything from here on is the same as my basic light shader 
    vec3 L = normalize(FS_LightPos - FS_Vertex); 
    vec3 E = normalize(FS_ViewPos - FS_Vertex); 
    vec3 R = normalize(reflect(-L, N)); 

    // Ambient color: light color times ambient factor 
    vec4 ambient = Light.Color * Light.Ambient; 

    // Diffuse factor: product of Normal to Light vectors 
    // Diffuse color: light color times the diffuse factor 
    float dfactor = max(dot(N, L), 0); 
    vec4 diffuse = clamp(Light.Color * dfactor, 0, 1); 

    // Specular factor: product of reflected to camera vectors 
    // Note: applies only if the diffuse factor is greater than zero 
    float sfactor = 0.0; 
    if(dfactor > 0) 
    { 
     sfactor = pow(max(dot(R, E), 0.0), 8.0); 
    } 

    // Specular color: light color times specular factor 
    vec4 specular = clamp(Light.Color * sfactor, 0, 1); 

    // Light attenuation: square of the distance moderated by light's power factor 
    float atten = 1 + pow(length(FS_LightPos - FS_Vertex), 2)/Light.Power; 

    // The fragment color is a factor of the pixel and light colors: 
    // Note: attenuation only applies to diffuse and specular components 
    return getPixelColor() * (ambient + (diffuse + specular)/atten); 
} 

void main() 
{ 
    frag_Output = Light.Active == 1 
     ? getLightColor() 
     : getPixelColor(); 
} 

这就是它!我希望你有足够的信息,当然,你的帮助将不胜感激! :) 保重。

+0

没有看你的代码,从图像看,你的立方体看起来像8个共享顶点和gouraud法线?所以你的法线和你的切线是错误的,高斯阴影用于近似光滑的表面,立方体当然不是光滑的表面。在你做任何事情之前,修复你的表面法线(提示它们应该垂直于表面,额外的提示:是的,这意味着没有共享顶点)。 –

+0

非常感谢LJ - gouraud法线不是问题的根源,但是您的评论使问题更加明显我发现:现在左边的脸总是处于光明中,就好像它在上面 - 右边的那个(截图中不可见)总是在黑暗中! – Smoove

我experiancing一个非常类似的问题,我无法解释为什么照明不工作的权利,但我可以回答你的第一个问题,起码说明如何我不知怎么照明可接受工作(尽管你的问题可能并不一定与我的相同)。

首先在理论上如果切线和bitangents计算正确,那么你在tangentspace与tangentspace正常[0,0,1]做计算的时候应该得到完全一样的照明效果。其次,虽然你应该通过乘以逆转矩模型 - 视图矩阵as explained by this tutorial将你的法线从模型转换到相机空间是常识,我发现如果你转换正常相切模型视图矩阵而不是逆转置模型视图。即使用normalMatrix = mat3(W);而不是normalMatrix = transpose(inverse(mat3(W)));

在我的情况下,这确实“修复”与光的问题,,但我不知道为什么这固定它,但我不能保证它不(它实际上我认为它)介绍其他阴影问题