Keras卷积层输出的可视化
问题描述:
我已经为这个问题写了下面的代码,其中有两个卷积层(简称Conv1和Conv2),并且我想绘制每个图层的所有输出(它是独立的)。 Conv1的一切都很好,但我错过了关于Conv2的一些事情。Keras卷积层输出的可视化
我正在向Conv1提供一个1x1x25x25(num图像,num通道,高度,宽度(我的约定,TF或Theano惯例))图像,它有四个5x5滤镜。这意味着它的输出形状是4x1x1x25x25(num filters,num images,num channels,height,width),产生4个图。
现在,这个输出被送到具有6个3x3滤波器的Conv1。因此,Conv2的输出应该是6x(4x1x1x25x25),但它不是!它相当于6x1x1x25x25。这意味着,只有6个地块而不是6x4,但为什么?以下功能也打印每个输出的形状,它们是
(1, 1, 25, 25, 4)
-------------------
(1, 1, 25, 25, 6)
-------------------
而应该是
(1, 1, 25, 25, 4)
-------------------
(1, 4, 25, 25, 6)
-------------------
,对吗?
import numpy as np
#%matplotlib inline #for Jupyter ONLY
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Conv2D
from keras import backend as K
model = Sequential()
# Conv1
conv1_filter_size = 5
model.add(Conv2D(nb_filter=4, nb_row=conv1_filter_size, nb_col=conv1_filter_size,
activation='relu',
border_mode='same',
input_shape=(25, 25, 1)))
# Conv2
conv2_filter_size = 3
model.add(Conv2D(nb_filter=6, nb_row=conv2_filter_size, nb_col=conv2_filter_size,
activation='relu',
border_mode='same'))
# The image to be sent through the model
img = np.array([
[[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.]],
[[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.]],
[[1.],[1.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[1.],[1.],[1.],[1.],[1.],[1.],[1.]],
[[1.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[0.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[0.],[0.],[1.],[1.],[1.],[1.],[1.]],
[[1.],[1.],[1.],[1.],[0.],[0.],[0.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[0.],[1.],[1.],[1.],[1.]],
[[1.],[1.],[1.],[1.],[0.],[0.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[0.],[1.],[1.],[1.]],
[[1.],[1.],[1.],[0.],[0.],[1.],[1.],[1.],[0.],[0.],[0.],[1.],[1.],[1.],[0.],[0.],[0.],[1.],[1.],[1.],[0.],[0.],[1.],[1.],[1.]],
[[1.],[1.],[0.],[0.],[1.],[1.],[1.],[0.],[0.],[0.],[0.],[0.],[1.],[0.],[0.],[0.],[0.],[0.],[1.],[1.],[1.],[0.],[0.],[1.],[1.]],
[[1.],[1.],[0.],[0.],[1.],[1.],[1.],[0.],[0.],[0.],[0.],[0.],[1.],[0.],[0.],[0.],[0.],[0.],[1.],[1.],[1.],[1.],[0.],[1.],[1.]],
[[1.],[0.],[0.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[0.],[1.],[1.],[1.],[0.],[0.],[0.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[1.]],
[[1.],[0.],[0.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[1.]],
[[1.],[0.],[0.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[1.]],
[[1.],[0.],[0.],[1.],[1.],[1.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[1.],[1.],[1.],[0.],[0.],[1.]],
[[1.],[0.],[0.],[1.],[1.],[1.],[0.],[0.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[1.],[1.],[1.],[0.],[0.],[1.]],
[[1.],[0.],[0.],[1.],[1.],[1.],[0.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[0.],[1.],[1.],[1.],[0.],[0.],[1.]],
[[1.],[0.],[0.],[1.],[1.],[1.],[0.],[0.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[1.],[1.],[1.],[0.],[0.],[1.]],
[[1.],[1.],[0.],[1.],[1.],[1.],[1.],[0.],[0.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[0.],[1.],[1.],[1.],[0.],[1.],[1.]],
[[1.],[1.],[0.],[0.],[1.],[1.],[1.],[0.],[0.],[0.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[0.],[1.],[1.],[1.],[0.],[0.],[1.],[1.]],
[[1.],[1.],[1.],[0.],[0.],[1.],[1.],[1.],[1.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[1.],[1.],[1.],[0.],[0.],[1.],[1.],[1.]],
[[1.],[1.],[1.],[0.],[0.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[0.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[1.],[1.],[1.]],
[[1.],[1.],[1.],[1.],[0.],[0.],[0.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[0.],[1.],[1.],[1.],[1.]],
[[1.],[1.],[1.],[1.],[1.],[0.],[0.],[0.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[0.],[1.],[1.],[1.],[1.],[1.]],
[[1.],[1.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[1.],[1.],[1.],[1.],[1.],[1.],[1.]],
[[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[0.],[0.],[0.],[0.],[0.],[0.],[0.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.]],
[[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.]]])
def get_layer_outputs(image):
'''This function extracts the numerical output of each layer.'''
outputs = [layer.output for layer in model.layers]
comp_graph = [K.function([model.input] + [K.learning_phase()], [output]) for output in outputs]
# Feeding the image
layer_outputs_list = [op([[image]]) for op in comp_graph]
layer_outputs = []
for layer_output in layer_outputs_list:
print(np.array(layer_output).shape, end='\n-------------------\n')
layer_outputs.append(layer_output[0][0])
return layer_outputs
def plot_layer_outputs(image, layer_number):
'''This function handels plotting of the layers'''
layer_outputs = get_layer_outputs(image)
x_max = layer_outputs[layer_number].shape[0]
y_max = layer_outputs[layer_number].shape[1]
n = layer_outputs[layer_number].shape[2]
L = []
for i in range(n):
L.append(np.zeros((x_max, y_max)))
for i in range(n):
for x in range(x_max):
for y in range(y_max):
L[i][x][y] = layer_outputs[layer_number][x][y][i]
for img in L:
plt.figure()
plt.imshow(img, interpolation='nearest')
plot_layer_outputs(img, 1)
答
卷积层的输出被捆绑为一个图像与多个通道。这些可以被认为是特征通道,与色彩通道相反。例如,如果卷积图层具有F
数量的过滤器,则无论输入图像具有多少(颜色或特征)通道,它都将输出具有F
通道数量的图像。这就是Conv2生成6个特征地图而不是6x4的原因。 更详细地说,卷积滤波器将对所有输入通道进行卷积,卷积的线性组合将被馈送到其激活函数。
如果您知道任何参考资料,请分享。 – Miladiouss