ggplot2 abline和stat_smooth的图例
我有一些ggplot传说的问题,这里是我的第一个代码,只有corrGenes的图例,这很好。ggplot2 abline和stat_smooth的图例
gene1=c(1.041,0.699,0.602,0.602,2.585,0.602,1.000,0.602,1.230,1.176,0.699,0.477,1.322)
BIME = c(0.477,0.477,0.301,0.477,2.398,0.301,0.602,0.301,0.602,0.699,0.602,0.477,1.176)
corrGenes=c(0.922,0.982,0.934,0.917,0.993,0.697,0.000,0.440,0.859,0.788,0.912,0.687,0.894)
DF=data.frame(gene1,BIME,corrGenes)
plot= ggplot(data=DF,aes(x=gene1,y=BIME))+
geom_point(aes(colour=corrGenes),size=5)+
ylab("BIME normalized counts (log10(RPKM))")+
xlab("gene1 normalized counts (log10(RPKM))")
当我添加abline流畅,我得到了正确的阴谋:
plot= ggplot(data=DF,aes(x=gene1,y=BIME))+
geom_point(aes(colour=corrGenes),size=5)+
geom_abline(intercept=0, slope=1)+
stat_smooth(method = "lm",se=FALSE)+
ylab("BIME normalized counts (log10(RPKM))")+
xlab("gene1 normalized counts (log10(RPKM))")
,但没有办法让他们的传说,我想等多种组合:
plot= ggplot(data=DF,aes(x=gene1,y=BIME))+
geom_point(aes(colour=corrGenes),size=5)+
geom_abline(aes(colour="best"),intercept=0, slope=1)+
stat_smooth(aes(colour="data"),method = "lm",se=FALSE)+
scale_colour_manual(name="Fit", values=c("data"="blue", "best"="black"))+
ylab("BIME normalized counts (log10(RPKM))")+
xlab("gene1 normalized counts (log10(RPKM))")
如果有人有解决这个微小但非常烦人的问题的想法,这将是非常有益的!
最后,我发现用了一招花药方式。首先,我计算了线性回归并将结果转换为一个数据框,我添加了我的最佳拟合(截距= 0和斜率= 1),然后为数据类型(数据或最佳)添加了一列。
modele = lm(BIME ~ gene1, data=DF)
coefs = data.frame(intercept=coef(modele)[1],slope=coef(modele)[2])
coefs= rbind(coefs,list(0,1))
regression=as.factor(c('data','best'))
coefs=cbind(coefs,regression)
然后我与唯一geom_abline命令绘制并从ggplot移动DF()来geom_point()和所使用的线型参数者区分的两行:
plot = ggplot()+
geom_point(data=pointSameStrandDF,aes(x=gene1,y=BIME,colour=corrGenes),size=5)+
geom_abline(data=coefs, aes(intercept=intercept,slope=slope,linetype=regression), show_guide=TRUE)+
ylab("BIME normalized counts (log10(RPKM))")+
xlab("gene1 normalized counts (log10(RPKM))")
有可能是这两条线的颜色使用方法,但我不知道如何?
感谢您的帮助!
show_guide=TRUE
参数应显示geom_abline
和stat_smooth
的图例。尝试运行下面的代码。
plot= ggplot(data=DF,aes(x=gene1,y=BIME))+
geom_point(aes(colour=corrGenes),size=5)+
geom_abline(aes(colour="best"),intercept=0, slope=1, show_guide=TRUE)+
stat_smooth(aes(colour="data"),method = "lm",se=FALSE, show_guide=TRUE)+
scale_colour_manual(name="Fit", values=c("data"="blue", "best"="black"))+
ylab("BIME normalized counts (log10(RPKM))")+
xlab("gene1 normalized counts (log10(RPKM))")
不知道这是最好的解决办法,但我可以告诉ggplot有两种尺度,一个是颜色(贵点),另一个用于填充颜色。你可能会问哪种填充颜色?一个我在aes
添加了两行:
plot = ggplot(data=DF,aes(x=gene1,y=BIME)) +
geom_point(size=5, aes(colour=corrGenes)) +
geom_abline(aes(fill="black"),intercept=0, slope=1) +
stat_smooth(aes(fill="blue"), method = "lm",se=FALSE) +
scale_fill_manual(name='My Lines', values=c("black", "blue"))+
ylab("BIME normalized counts (log10(RPKM))")+
xlab("gene1 normalized counts (log10(RPKM))")
感谢mucio,它好多了,但仍然有一个小问题,我不明白,为什么颜色图例是蓝色的,而不是回蓝色,因为您指定'geom_abline(aes(fill =“black”),intercept = 0,slope = 1)','stat_smooth(aes(fill =“blue”),method =“lm”,se = FALSE)'并将其链接到'scale_fill_manual(name ='My Lines',values = c(“black”,“blue”))' – Mesmer
感谢您的回答,我已经尝试过了,但是我得到了同样的错误:'错误:提供给离散量程的连续值' – Mesmer
如果您删除了scale_colour_manual行,那么是否可以解决问题? – figurine
不,同样的错误:( – Mesmer