机器学习《Machine Learning》笔记--偏差(Bias)和方差(Variance)
偏差(Bias)和方差(Variance)
偏差(Bias):描述的是预测值(估计值)的期望与真实值之间的差距。偏差越大,越偏离真实数据。
方差(Variance):描述的是预测值的变化范围,离散程度,也就是离其期望值的距离。方差越大,数据的分布越分散。
偏差:形容数据跟我们期望的中心差得有多远,算是“有监督的”,有人的知识参与指标;
方差:形容数据分散程度的,算是“无监督的”,客观的指标。
噪声:表达了在当前任务上任何学习算法所能达到的期望泛化误差的下界,即刻画了学习问题本身的难度.
偏差一方差分解说明,泛化性能是由学习算法的能力、数据的充分性以及学习任务本身的难度所共同决定的.
给定学习任务,为了取得好的泛化性能,则需使偏差较小,即能够充分拟合数据,并且使方差较小,即使得数据扰动产生的影响小.
一般来说偏差与方差是有冲突的,这称为偏差—方差窘境,给定学习任务,假定我们能控制学习算法的训练程度(例如决策树可控制层数,神经网络可控制训练轮数,集成学习方法可控制基学习器个数),则在训练不足时,学习器的拟合能力不够强,训练数据的扰动不足以便学习器产生显著变化,此时偏差主导了泛化错误率;随着训练程度的加深,学习器的拟合能力逐渐增强,训练数据发生的扰动渐渐能被学习器学到,方差逐渐主导了泛化错误率;在训练程度充足后,学习器的拟合能力已非常强,训练数据发生的轻微扰动都会导致学习器发生显著变化,若训练数据自身的、非全局的特性被学习器学到了,则将发生过拟合.
为什么KNN(k最近邻k-Nearest Neighbor)算法在增大k时,偏差会变大;但RF(Random Forest随机森林)增大树的数目时偏差却保持不变;GBDT(Gradient Boosting)在增大树的数目时偏差却又能变小。
对于KNN算法,k值越大,表示模型的学习能力越弱,因为k越大,它越倾向于从“面”上考虑做出判断,而不是具体地考虑一个样本近身的情况来做出判断,所以,它的偏差会越来越大。
对于RF,我们实际上是部分实现了多次训练取均值的效果,每次训练得到的树都是一个很强的学习者,每一个的方差都比较大,但综合起来就会比较小。好比一个很强的学习者学习时,刮着西风,它会据此调整自己的瞄准方法,另一个很强的学习者学习时刮着东风,(西风、东风可以理解为不同训练集中的噪声)它也会据此调整自己的瞄准方法,在测试样本时,一个误差向西,一个误差向东,刚好起到互相抵消的作用,所以方差会比较小。但是由于每棵树的偏差都差不多,所以,我们取平均时,偏差不会怎么变化。
为什么说是部分实现了多次训练取均值的效果而不是全部呢?因为我们在训练各棵树时,是通过抽样样本集来实现多次训练的,不同的训练集中不可避免地会有重合的情况,此时,就不能认为是独立的多次训练了,各个训练得到的树之间的方差会产生一定的相关性,训练集中重合的样本越多,则两棵树之间的方差的相关性越强,就越难达成方差互相抵消的效果。
对于GBDT,N棵树之间根本就不是一种多次训练取均值的关系,而是N棵树组成了相关关联,层层递进的超级学习者,可想而知,它的方差一定是比较大的。但由于它的学习能力比较强,所以,它的偏差是很小的,而且树的棵树越多,学习能力就越强,偏差就越小。也就是说,只要学习次数够多,预测的均值会无限接近于目标。简单讲就是GBDT的N棵树实际上是一个有机关联的模型,不能认为是N个模型。