python roc_curve和auc的打印并形成图形
#评价指标输出
y_pred = model.predict(x_test) y_test=data.label def do_metrics(y_test,y_pred): plot_auc(y_test,y_pred) #auc计算并生成图形 def plot_auc(y_test,y_pred): print("auc:") fpr, tpr, thread = metrics.roc_curve(np.array(y_test), np.array(y_pred)) x=metrics.auc(fpr, tpr) print(x) plt.title("ROC curve of %s (AUC = %.4f)" % ('lightgbm', x)) plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.plot(fpr,tpr) # use pylab to plot x and y plt.show() # show the plot on the screen