C++最小二乘法拟合-(线性拟合和多项式拟合)
在进行曲线拟合时用的最多的是最小二乘法,其中以一元函数(线性)和多元函数(多项式)居多,下面这个类专门用于进行多项式拟合,可以根据用户输入的阶次进行多项式拟合,算法来自于网上,和GSL的拟合算法对比过,没有问题。此类在拟合完后还能计算拟合之后的误差:SSE(剩余平方和),SSR(回归平方和),RMSE(均方根误差),R-square(确定系数)。
1.fit类的实现
先看看fit类的代码:(只有一个头文件方便使用)
这是用网上的代码实现的,下面有用GSL实现的版本
- #ifndef CZY_MATH_FIT
- #define CZY_MATH_FIT
- #include <vector>
- /*
- 尘中远,于2014.03.20
- 主页:http://blog.****.net/czyt1988/article/details/21743595
- 参考:http://blog.****.net/maozefa/article/details/1725535
- */
- namespace czy{
- ///
- /// \brief 曲线拟合类
- ///
- class Fit{
- std::vector<double> factor; ///<拟合后的方程系数
- double ssr; ///<回归平方和
- double sse; ///<(剩余平方和)
- double rmse; ///<RMSE均方根误差
- std::vector<double> fitedYs;///<存放拟合后的y值,在拟合时可设置为不保存节省内存
- public:
- Fit():ssr(0),sse(0),rmse(0){factor.resize(2,0);}
- ~Fit(){}
- ///
- /// \brief 直线拟合-一元回归,拟合的结果可以使用getFactor获取,或者使用getSlope获取斜率,getIntercept获取截距
- /// \param x 观察值的x
- /// \param y 观察值的y
- /// \param isSaveFitYs 拟合后的数据是否保存,默认否
- ///
- template<typename T>
- bool linearFit(const std::vector<typename T>& x, const std::vector<typename T>& y,bool isSaveFitYs=false)
- {
- return linearFit(&x[0],&y[0],getSeriesLength(x,y),isSaveFitYs);
- }
- template<typename T>
- bool linearFit(const T* x, const T* y,size_t length,bool isSaveFitYs=false)
- {
- factor.resize(2,0);
- typename T t1=0, t2=0, t3=0, t4=0;
- for(int i=0; i<length; ++i)
- {
- t1 += x[i]*x[i];
- t2 += x[i];
- t3 += x[i]*y[i];
- t4 += y[i];
- }
- factor[1] = (t3*length - t2*t4) / (t1*length - t2*t2);
- factor[0] = (t1*t4 - t2*t3) / (t1*length - t2*t2);
- //////////////////////////////////////////////////////////////////////////
- //计算误差
- calcError(x,y,length,this->ssr,this->sse,this->rmse,isSaveFitYs);
- return true;
- }
- ///
- /// \brief 多项式拟合,拟合y=a0+a1*x+a2*x^2+……+apoly_n*x^poly_n
- /// \param x 观察值的x
- /// \param y 观察值的y
- /// \param poly_n 期望拟合的阶数,若poly_n=2,则y=a0+a1*x+a2*x^2
- /// \param isSaveFitYs 拟合后的数据是否保存,默认是
- ///
- template<typename T>
- void polyfit(const std::vector<typename T>& x
- ,const std::vector<typename T>& y
- ,int poly_n
- ,bool isSaveFitYs=true)
- {
- polyfit(&x[0],&y[0],getSeriesLength(x,y),poly_n,isSaveFitYs);
- }
- template<typename T>
- void polyfit(const T* x,const T* y,size_t length,int poly_n,bool isSaveFitYs=true)
- {
- factor.resize(poly_n+1,0);
- int i,j;
- //double *tempx,*tempy,*sumxx,*sumxy,*ata;
- std::vector<double> tempx(length,1.0);
- std::vector<double> tempy(y,y+length);
- std::vector<double> sumxx(poly_n*2+1);
- std::vector<double> ata((poly_n+1)*(poly_n+1));
- std::vector<double> sumxy(poly_n+1);
- for (i=0;i<2*poly_n+1;i++){
- for (sumxx[i]=0,j=0;j<length;j++)
- {
- sumxx[i]+=tempx[j];
- tempx[j]*=x[j];
- }
- }
- for (i=0;i<poly_n+1;i++){
- for (sumxy[i]=0,j=0;j<length;j++)
- {
- sumxy[i]+=tempy[j];
- tempy[j]*=x[j];
- }
- }
- for (i=0;i<poly_n+1;i++)
- for (j=0;j<poly_n+1;j++)
- ata[i*(poly_n+1)+j]=sumxx[i+j];
- gauss_solve(poly_n+1,ata,factor,sumxy);
- //计算拟合后的数据并计算误差
- fitedYs.reserve(length);
- calcError(&x[0],&y[0],length,this->ssr,this->sse,this->rmse,isSaveFitYs);
- }
- ///
- /// \brief 获取系数
- /// \param 存放系数的数组
- ///
- void getFactor(std::vector<double>& factor){factor = this->factor;}
- ///
- /// \brief 获取拟合方程对应的y值,前提是拟合时设置isSaveFitYs为true
- ///
- void getFitedYs(std::vector<double>& fitedYs){fitedYs = this->fitedYs;}
- ///
- /// \brief 根据x获取拟合方程的y值
- /// \return 返回x对应的y值
- ///
- template<typename T>
- double getY(const T x) const
- {
- double ans(0);
- for (size_t i=0;i<factor.size();++i)
- {
- ans += factor[i]*pow((double)x,(int)i);
- }
- return ans;
- }
- ///
- /// \brief 获取斜率
- /// \return 斜率值
- ///
- double getSlope(){return factor[1];}
- ///
- /// \brief 获取截距
- /// \return 截距值
- ///
- double getIntercept(){return factor[0];}
- ///
- /// \brief 剩余平方和
- /// \return 剩余平方和
- ///
- double getSSE(){return sse;}
- ///
- /// \brief 回归平方和
- /// \return 回归平方和
- ///
- double getSSR(){return ssr;}
- ///
- /// \brief 均方根误差
- /// \return 均方根误差
- ///
- double getRMSE(){return rmse;}
- ///
- /// \brief 确定系数,系数是0~1之间的数,是数理上判定拟合优度的一个量
- /// \return 确定系数
- ///
- double getR_square(){return 1-(sse/(ssr+sse));}
- ///
- /// \brief 获取两个vector的安全size
- /// \return 最小的一个长度
- ///
- template<typename T>
- size_t getSeriesLength(const std::vector<typename T>& x
- ,const std::vector<typename T>& y)
- {
- return (x.size() > y.size() ? y.size() : x.size());
- }
- ///
- /// \brief 计算均值
- /// \return 均值
- ///
- template <typename T>
- static T Mean(const std::vector<T>& v)
- {
- return Mean(&v[0],v.size());
- }
- template <typename T>
- static T Mean(const T* v,size_t length)
- {
- T total(0);
- for (size_t i=0;i<length;++i)
- {
- total += v[i];
- }
- return (total / length);
- }
- ///
- /// \brief 获取拟合方程系数的个数
- /// \return 拟合方程系数的个数
- ///
- size_t getFactorSize(){return factor.size();}
- ///
- /// \brief 根据阶次获取拟合方程的系数,
- /// 如getFactor(2),就是获取y=a0+a1*x+a2*x^2+……+apoly_n*x^poly_n中a2的值
- /// \return 拟合方程的系数
- ///
- double getFactor(size_t i){return factor.at(i);}
- private:
- template<typename T>
- void calcError(const T* x
- ,const T* y
- ,size_t length
- ,double& r_ssr
- ,double& r_sse
- ,double& r_rmse
- ,bool isSaveFitYs=true
- )
- {
- T mean_y = Mean<T>(y,length);
- T yi(0);
- fitedYs.reserve(length);
- for (int i=0; i<length; ++i)
- {
- yi = getY(x[i]);
- r_ssr += ((yi-mean_y)*(yi-mean_y));//计算回归平方和
- r_sse += ((yi-y[i])*(yi-y[i]));//残差平方和
- if (isSaveFitYs)
- {
- fitedYs.push_back(double(yi));
- }
- }
- r_rmse = sqrt(r_sse/(double(length)));
- }
- template<typename T>
- void gauss_solve(int n
- ,std::vector<typename T>& A
- ,std::vector<typename T>& x
- ,std::vector<typename T>& b)
- {
- gauss_solve(n,&A[0],&x[0],&b[0]);
- }
- template<typename T>
- void gauss_solve(int n
- ,T* A
- ,T* x
- ,T* b)
- {
- int i,j,k,r;
- double max;
- for (k=0;k<n-1;k++)
- {
- max=fabs(A[k*n+k]); /*find maxmum*/
- r=k;
- for (i=k+1;i<n-1;i++){
- if (max<fabs(A[i*n+i]))
- {
- max=fabs(A[i*n+i]);
- r=i;
- }
- }
- if (r!=k){
- for (i=0;i<n;i++) /*change array:A[k]&A[r] */
- {
- max=A[k*n+i];
- A[k*n+i]=A[r*n+i];
- A[r*n+i]=max;
- }
- }
- max=b[k]; /*change array:b[k]&b[r] */
- b[k]=b[r];
- b[r]=max;
- for (i=k+1;i<n;i++)
- {
- for (j=k+1;j<n;j++)
- A[i*n+j]-=A[i*n+k]*A[k*n+j]/A[k*n+k];
- b[i]-=A[i*n+k]*b[k]/A[k*n+k];
- }
- }
- for (i=n-1;i>=0;x[i]/=A[i*n+i],i--)
- for (j=i+1,x[i]=b[i];j<n;j++)
- x[i]-=A[i*n+j]*x[j];
- }
- };
- }
- #endif
GSL实现版本,此版本依赖于GSL需要先配置GSL,GSL配置方法网上很多,我的blog也有一篇介绍win + Qt环境下的配置,其它大同小异:http://blog.****.NET/czyt1988/article/details/39178975
- #ifndef CZYMATH_FIT_H
- #define CZYMATH_FIT_H
- #include <czyMath.h>
- namespace gsl{
- #include <gsl/gsl_fit.h>
- #include <gsl/gsl_cdf.h> /* 提供了 gammaq 函数 */
- #include <gsl/gsl_vector.h> /* 提供了向量结构*/
- #include <gsl/gsl_matrix.h>
- #include <gsl/gsl_multifit.h>
- }
- namespace czy {
- ///
- /// \brief The Math class 用于处理简单数学计算
- ///
- namespace Math{
- using namespace gsl;
- ///
- /// \brief 拟合类,封装了gsl的拟合算法
- ///
- /// 实现线性拟合和多项式拟合
- ///
- class fit{
- public:
- fit(){}
- ~fit(){}
- private:
- std::map<double,double> m_factor;//记录各个点的系数,key中0是0次方,1是1次方,value是对应的系数
- std::map<double,double> m_err;
- double m_cov;//相关度
- double m_ssr;//回归平方和
- double m_sse;//(剩余平方和)
- double m_rmse;//RMSE均方根误差
- double m_wssr;
- double m_goodness;//基于wssr的拟合优度
- void clearAll(){
- m_factor.clear();m_err.clear();
- }
- public:
- //计算拟合的显著性
- static void getDeterminateOfCoefficient(
- const double* y,const double* yi,size_t length
- ,double& out_ssr,double& out_sse,double& out_sst,double& out_rmse,double& out_RSquare)
- {
- double y_mean = mean(y,y+length);
- out_ssr = 0.0;
- for (size_t i =0;i<length;++i)
- {
- out_ssr += ((yi[i]-y_mean)*(yi[i]-y_mean));
- out_sse += ((y[i] - yi[i])*(y[i] - yi[i]));
- }
- out_sst = out_ssr + out_sse;
- out_rmse = sqrt(out_sse/(double(length)));
- out_RSquare = out_ssr/out_sst;
- }
- ///
- /// \brief 获取拟合的系数
- /// \param n 0是0次方,1是1次方,value是对应的系数
- /// \return 次幂对应的系数
- ///
- double getFactor(double n)
- {
- auto ite = m_factor.find(n);
- if (ite == m_factor.end())
- return 0.0;
- return ite->second;
- }
- ///
- /// \brief 获取系数的个数
- /// \return
- ///
- size_t getFactorSize()
- {
- return m_factor.size();
- }
- ///
- /// \brief linearFit 线性拟合的静态函数
- /// \param x 数据点的横坐标值数组
- /// \param xstride 横坐标值数组索引步长 xstride 与 ystride 的值设为 1,表示数据点集 {(xi,yi)|i=0,1,⋯,n−1} 全部参与直线的拟合;
- /// \param y 数据点的纵坐标值数组
- /// \param ystride 纵坐标值数组索引步长
- /// \param n 数据点的数量
- /// \param out_intercept 计算的截距
- /// \param out_slope 计算的斜率
- /// \param out_interceptErr 计算的截距误差
- /// \param out_slopeErr 计算的斜率误差
- /// \param out_cov 计算的斜率和截距的相关度
- /// \param out_wssr 拟合的wssr值
- /// \return
- ///
- static int linearFit(
- const double *x
- ,const size_t xstride
- ,const double *y
- ,const size_t ystride
- ,size_t n
- ,double& out_intercept
- ,double& out_slope
- ,double& out_interceptErr
- ,double& out_slopeErr
- ,double& out_cov
- ,double& out_wssr
- )
- {
- return gsl_fit_linear(x,xstride,y,ystride,n
- ,&out_intercept,&out_slope,&out_interceptErr,&out_slopeErr,&out_cov,&out_wssr);
- }
- ///
- /// \brief 线性拟合
- /// \param x 拟合的x值
- /// \param y 拟合的y值
- /// \param n x,y值对应的长度
- /// \return
- ///
- bool linearFit(const double *x,const double *y,size_t n)
- {
- clearAll();
- m_factor[0]=0;m_err[0]=0;
- m_factor[1]=1;m_err[1]=0;
- int r = linearFit(x,1,y,1,n
- ,m_factor[0],m_factor[1],m_err[0],m_err[1],m_cov,m_wssr);
- if (0 != r)
- return false;
- m_goodness = gsl_cdf_chisq_Q(m_wssr/2.0,(n-2)/2.0);//计算优度
- {
- std::vector<double> yi;
- getYis(x,n,yi);
- double t;
- getDeterminateOfCoefficient(y,&yi[0],n,m_ssr,m_sse,t,m_rmse,t);
- }
- return true;
- }
- bool linearFit(const std::vector<double>& x,const std::vector<double>& y)
- {
- size_t n = x.size() > y.size() ? y.size() :x.size();
- return linearFit(&x[0],&y[0],n);
- }
- ///
- /// \brief 多项式拟合
- /// \param poly_n 阶次,如c0+C1x是1,若c0+c1x+c2x^2则poly_n是2
- static int polyfit(const double *x
- ,const double *y
- ,size_t xyLength
- ,unsigned poly_n
- ,std::vector<double>& out_factor
- ,double& out_chisq)//拟合曲线与数据点的优值函数最小值 ,χ2 检验
- {
- gsl_matrix *XX = gsl_matrix_alloc(xyLength, poly_n + 1);
- gsl_vector *c = gsl_vector_alloc(poly_n + 1);
- gsl_matrix *cov = gsl_matrix_alloc(poly_n + 1, poly_n + 1);
- gsl_vector *vY = gsl_vector_alloc(xyLength);
- for(size_t i = 0; i < xyLength; i++)
- {
- gsl_matrix_set(XX, i, 0, 1.0);
- gsl_vector_set (vY, i, y[i]);
- for(unsigned j = 1; j <= poly_n; j++)
- {
- gsl_matrix_set(XX, i, j, pow(x[i], int(j) ));
- }
- }
- gsl_multifit_linear_workspace *workspace = gsl_multifit_linear_alloc(xyLength, poly_n + 1);
- int r = gsl_multifit_linear(XX, vY, c, cov, &out_chisq, workspace);
- gsl_multifit_linear_free(workspace);
- out_factor.resize(c->size,0);
- for (size_t i=0;i<c->size;++i)
- {
- out_factor[i] = gsl_vector_get(c,i);
- }
- gsl_vector_free(vY);
- gsl_matrix_free(XX);
- gsl_matrix_free(cov);
- gsl_vector_free(c);
- return r;
- }
- bool polyfit(const double *x
- ,const double *y
- ,size_t xyLength
- ,unsigned poly_n)
- {
- double chisq;
- std::vector<double> factor;
- int r = polyfit(x,y,xyLength,poly_n,factor,chisq);
- if (0 != r)
- return false;
- m_goodness = gsl_cdf_chisq_Q(chisq/2.0,(xyLength-2)/2.0);//计算优度
- clearAll();
- for (unsigned i=0;i<poly_n+1;++i)
- {
- m_factor[i]=factor[i];
- }
- std::vector<double> yi;
- getYis(x,xyLength,yi);
- double t;//由于没用到,所以都用t代替
- getDeterminateOfCoefficient(y,&yi[0],xyLength,m_ssr,m_sse,t,m_rmse,t);
- return true;
- }
- bool polyfit(const std::vector<double>& x
- ,const std::vector<double>& y
- ,unsigned plotN)
- {
- size_t n = x.size() > y.size() ? y.size() :x.size();
- return polyfit(&x[0],&y[0],n,plotN);
- }
- double getYi(double x) const
- {
- double ans(0);
- for (auto ite = m_factor.begin();ite != m_factor.end();++ite)
- {
- ans += (ite->second)*pow(x,ite->first);
- }
- return ans;
- }
- void getYis(const double* x,size_t length,std::vector<double>& yis) const
- {
- yis.clear();
- yis.resize(length);
- for(size_t i=0;i<length;++i)
- {
- yis[i] = getYi(x[i]);
- }
- }
- ///
- /// \brief 获取斜率
- /// \return 斜率值
- ///
- double getSlope() {return m_factor[1];}
- ///
- /// \brief 获取截距
- /// \return 截距值
- ///
- double getIntercept() {return m_factor[0];}
- ///
- /// \brief 回归平方和
- /// \return 回归平方和
- ///
- double getSSR() const {return m_ssr;}
- double getSSE() const {return m_sse;}
- double getSST() const {return m_ssr+m_sse;}
- double getRMSE() const {return m_rmse;}
- double getRSquare() const {return 1.0-(m_sse/(m_ssr+m_sse));}
- double getGoodness() const {return m_goodness;}
- };
- }
- }
- #endif // CZYMATH_FIT_H
为了防止重命名,把其放置于czy的命名空间中,此类主要两个函数:
1.求解线性拟合:
- ///
- /// \brief 直线拟合-一元回归,拟合的结果可以使用getFactor获取,或者使用getSlope获取斜率,getIntercept获取截距
- /// \param x 观察值的x
- /// \param y 观察值的y
- /// \param length x,y数组的长度
- /// \param isSaveFitYs 拟合后的数据是否保存,默认否
- ///
- template<typename T>
- bool linearFit(const std::vector<typename T>& x, const std::vector<typename T>& y,bool isSaveFitYs=false);
- template<typename T>
- bool linearFit(const T* x, const T* y,size_t length,bool isSaveFitYs=false);
2.多项式拟合:
- ///
- /// \brief 多项式拟合,拟合y=a0+a1*x+a2*x^2+……+apoly_n*x^poly_n
- /// \param x 观察值的x
- /// \param y 观察值的y
- /// \param length x,y数组的长度
- /// \param poly_n 期望拟合的阶数,若poly_n=2,则y=a0+a1*x+a2*x^2
- /// \param isSaveFitYs 拟合后的数据是否保存,默认是
- ///
- template<typename T>
- void polyfit(const std::vector<typename T>& x,const std::vector<typename T>& y,int poly_n,bool isSaveFitYs=true);
- template<typename T>
- void polyfit(const T* x,const T* y,size_t length,int poly_n,bool isSaveFitYs=true);
这两个函数都用模板函数形式写,主要是为了能使用于float和double两种数据类型
2.fit类的MFC示范程序
下面看看如何使用这个类,以MFC示范,使用了开源的绘图控件Hight-Speed Charting,使用方法见http://blog.****.net/czyt1988/article/details/8740500
新建对话框文件,
对话框资源文件如图所示:
加入下面的这些变量:
- std::vector<double> m_x,m_y,m_yploy;
- const size_t m_size;
- CChartLineSerie *m_pLineSerie1;
- CChartLineSerie *m_pLineSerie2;
由于m_size是常量,因此需要在构造函数进行初始化,如:
- ClineFitDlg::ClineFitDlg(CWnd* pParent /*=NULL*/)
- : CDialogEx(ClineFitDlg::IDD, pParent)
- ,m_size(512)
- ,m_pLineSerie1(NULL)
- CChartAxis *pAxis = NULL;
- pAxis = m_chartCtrl.CreateStandardAxis(CChartCtrl::BottomAxis);
- pAxis->SetAutomatic(true);
- pAxis = m_chartCtrl.CreateStandardAxis(CChartCtrl::LeftAxis);
- pAxis->SetAutomatic(true);
- m_x.resize(m_size);
- m_y.resize(m_size);
- m_yploy.resize(m_size);
- for(size_t i =0;i<m_size;++i)
- {
- m_x[i] = i;
- m_y[i] = i+randf(-25,28);
- m_yploy[i] = 0.005*pow(double(i),2)+0.0012*i+4+randf(-25,25);
- }
- m_chartCtrl.RemoveAllSeries();//先清空
- m_pLineSerie1 = m_chartCtrl.CreateLineSerie();
- m_pLineSerie1->SetSeriesOrdering(poNoOrdering);//设置为无序
- m_pLineSerie1->AddPoints(&m_x[0], &m_y[0], m_size);
- m_pLineSerie1->SetName(_T("线性数据"));
- m_pLineSerie2 = m_chartCtrl.CreateLineSerie();
- m_pLineSerie2->SetSeriesOrdering(poNoOrdering);//设置为无序
- m_pLineSerie2->AddPoints(&m_x[0], &m_yploy[0], m_size);
- m_pLineSerie2->SetName(_T("多项式数据"));
rangf是随机数生成函数,实现如下:
- double ClineFitDlg::randf(double min,double max)
- {
- int minInteger = (int)(min*10000);
- int maxInteger = (int)(max*10000);
- int randInteger = rand()*rand();
- int diffInteger = maxInteger - minInteger;
- int resultInteger = randInteger % diffInteger + minInteger;
- return resultInteger/10000.0;
- }
运行程序,如图所示
线性拟合的使用如下:
- void ClineFitDlg::OnBnClickedButton1()
- {
- CString str,strTemp;
- czy::Fit fit;
- fit.linearFit(m_x,m_y);
- str.Format(_T("方程:y=%gx+%g\r\n误差:ssr:%g,sse=%g,rmse:%g,确定系数:%g"),fit.getSlope(),fit.getIntercept()
- ,fit.getSSR(),fit.getSSE(),fit.getRMSE(),fit.getR_square());
- GetDlgItemText(IDC_EDIT,strTemp);
- SetDlgItemText(IDC_EDIT,strTemp+_T("\r\n------------------------\r\n")+str);
- //在图上绘制拟合的曲线
- CChartLineSerie* pfitLineSerie1 = m_chartCtrl.CreateLineSerie();
- std::vector<double> x(2,0),y(2,0);
- x[0] = 0;x[1] = m_size-1;
- y[0] = fit.getY(x[0]);y[1] = fit.getY(x[1]);
- pfitLineSerie1->SetSeriesOrdering(poNoOrdering);//设置为无序
- pfitLineSerie1->AddPoints(&x[0], &y[0], 2);
- pfitLineSerie1->SetName(_T("拟合方程"));//SetName的作用将在后面讲到
- pfitLineSerie1->SetWidth(2);
- }
需要如下步骤:
- 声明Fit类,用于头文件在czy命名空间中,因此需要显示声明命名空间名称czy::Fit fit;
- 把观察数据输入进行拟合,由于是线性拟合,可以使用LinearFit函数,此函数把观察量的x值和y值传入即可进行拟合
- 拟合完后,拟合的相关结果保存在czy::Fit里面,可以通过相关方法调用,方法在头文件中都有详细说明
运行结果如图所示:
多项式拟合的使用如下:
- void ClineFitDlg::OnBnClickedButton2()
- {
- CString str;
- GetDlgItemText(IDC_EDIT1,str);
- if (str.IsEmpty())
- {
- MessageBox(_T("请输入阶次"),_T("警告"));
- return;
- }
- int n = _ttoi(str);
- if (n<0)
- {
- MessageBox(_T("请输入大于1的阶数"),_T("警告"));
- return;
- }
- czy::Fit fit;
- fit.polyfit(m_x,m_yploy,n,true);
- CString strFun(_T("y=")),strTemp(_T(""));
- for (int i=0;i<fit.getFactorSize();++i)
- {
- if (0 == i)
- {
- strTemp.Format(_T("%g"),fit.getFactor(i));
- }
- else
- {
- double fac = fit.getFactor(i);
- if (fac<0)
- {
- strTemp.Format(_T("%gx^%d"),fac,i);
- }
- else
- {
- strTemp.Format(_T("+%gx^%d"),fac,i);
- }
- }
- strFun += strTemp;
- }
- str.Format(_T("方程:%s\r\n误差:ssr:%g,sse=%g,rmse:%g,确定系数:%g"),strFun
- ,fit.getSSR(),fit.getSSE(),fit.getRMSE(),fit.getR_square());
- GetDlgItemText(IDC_EDIT,strTemp);
- SetDlgItemText(IDC_EDIT,strTemp+_T("\r\n------------------------\r\n")+str);
- //绘制拟合后的多项式
- std::vector<double> yploy;
- fit.getFitedYs(yploy);
- CChartLineSerie* pfitLineSerie1 = m_chartCtrl.CreateLineSerie();
- pfitLineSerie1->SetSeriesOrdering(poNoOrdering);//设置为无序
- pfitLineSerie1->AddPoints(&m_x[0], &yploy[0], yploy.size());
- pfitLineSerie1->SetName(_T("多项式拟合方程"));//SetName的作用将在后面讲到
- pfitLineSerie1->SetWidth(2);
- }
步骤如下:
- 和线性拟合一样,声明Fit变量
- 输入观察值,同时输入需要拟合的阶次,这里输入2阶,就是2项式拟合,最后的布尔变量是标定是否需要把拟合的结果点保存起来,保存点会根据观察的x值计算拟合的y值,保存结果点会花费更多的内存,如果拟合后需要绘制,设为true会更方便,如果只需要拟合的方程,可以设置为false
- 拟合完后,拟合的相关结果保存在czy::Fit里面,可以通过相关方法调用,方法在头文件中都有详细说明
代码:
- for (int i=0;i<fit.getFactorSize();++i)
- {
- if (0 == i)
- {
- strTemp.Format(_T("%g"),fit.getFactor(i));
- }
- else
- {
- double fac = fit.getFactor(i);
- if (fac<0)
- {
- strTemp.Format(_T("%gx^%d"),fac,i);
- }
- else
- {
- strTemp.Format(_T("+%gx^%d"),fac,i);
- }
- }
- strFun += strTemp;
- }
是用于生成方程的,由于系数小于时,打印时会把负号“-”显示,而正数时却不会显示正号,因此需要进行判断,如果小于0就不用添加“+”号,如果大于0就添加“+”号
结果如下:
源代码下载: