AI神经网络-CNN基本结构分析( Conv层、Pooling层、FCN层/softmax层)
<link href="https://****img.cn/public/favicon.ico" rel="SHORTCUT ICON">
<title>AI:IPPR的数学表示-CNN基本结构分析( Conv层、Pooling层、FCN层/softmax层) - wishchinYang的专栏 - ****博客</title>
<link rel="stylesheet" href="https://****img.cn/release/phoenix/template/css/detail-afa8a65ceb.min.css">
<link rel="stylesheet" href="https://****img.cn/release/phoenix/themes/skin3-template/skin3-template-9b39979775.min.css">
<script type="text/javascript">
var username = "wishchin";
var blog_address = "https://blog.****.net/wishchin";
var static_host = "https://****img.cn/release/phoenix/";
var currentUserName = "qq_27263511";
var isShowAds = true;
var isOwner = false;
var loginUrl = "http://passport.****.net/account/login?from=https://blog.****.net/wishchin/article/details/75213289"
var blogUrl = "https://blog.****.net/";
//页面皮肤样式
var curSkin = "skin3-template";
// 第四范式所需数据
var articleTitles = "AI:IPPR的数学表示-CNN基本结构分析( Conv层、Pooling层、FCN层/softmax层) - wishchinYang的专栏";
var articleID = "75213289";
var nickName = "wishchin";
</script>
<script type="text/javascript">
// Traffic Stats of the entire Web site By baidu
var _hmt = _hmt || [];
(function() {
var hm = document.createElement("script");
hm.src = "https://hm.baidu.com/hm.js?6bcd52f51e9b3dce32bec4a3997715ac";
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(hm, s);
})();
// Traffic Stats of the entire Web site By baidu end
</script>
<script src="https://****img.cn/public/common/libs/jquery/jquery-1.9.1.min.js" type="text/javascript"></script>
<script src="https://****img.cn/rabbit/exposure-click/main-1.0.6.js"></script>
<!-- 新版上报 -->
<script src="//g.****img.cn/track/1.1.1/track.js" type="text/javascript"></script>
<!-- 新版上报end -->
<link rel="stylesheet" href="https://****img.cn/public/sandalstrap/1.4/css/sandalstrap.min.css">
<style>
.MathJax, .MathJax_Message, .MathJax_Preview{
display: none
}
</style>
AI:IPPR的数学表示-CNN基本结构分析( Conv层、Pooling层、FCN层/softmax层)
name: “conv2”
type: “Convolution”
bottom: “norm1”
top: “conv2”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: “gaussian”
std: 0.01
}
bias_filler {
type: “constant”
value: 1
}
}
}
layer {
name: “relu2”
type: “ReLU”
bottom: “conv2”
top: “conv2”
}
CNN的结构分析—Pooling层
使用卷积核提取的大量特征,产生超高的维度,面临着表示困难的问题,且直接叠加的卷积层会产生更庞大的卷积特征集合。Pooling层一般作为显著性选取和降维的作用存在。
Pooling明显地降低了特征图的维度
使用MeanPooling的方式,相当于平均化特性,用于简化函数模型,同时丧失了一些特异性准确性,增加泛化性能,即是把复杂模型转化为一个平均模型,得失都很明显。而maxpooling则描述为提取特征本身的显著性作用,同时进行数据压缩。
MeanPooling可以用网络加深来替换其数据压缩的作用,一个MeanPooling层相当于网络深度增加两倍,而MeanPooling自身模型简单化的特点丧失了准确性表示,逐渐被取代一般不再被使用。上图中,同样地采用一个22的filter,max pooling是在每一个区域中寻找最大值,这里的stride=2,最终在原特征图中提取主要特征得到右图。概率意义上, MaxPooling 过程之后,特征更小且相对表示性更强。
参考文章:http://ufldl.stanford.edu/wiki/index.php/池化
池化的平移不变性:如果人们选择图像中的连续范围作为池化区域,并且只是池化相同(重复)的隐藏单元产生的特征,那么,这些池化单元就具有平移不变性 (translation invariant)。这就意味着即使图像经历了一个小的平移之后,依然会产生相同的 (池化的) 特征。在很多任务中 (例如物体检测、声音识别),我们都更希望得到具有平移不变性的特征,因为即使图像经过了平移,样例(图像)的标记仍然保持不变。例如,如果你处理一个MNIST数据集的数字,把它向左侧或右侧平移,那么不论最终的位置在哪里,你都会期望你的分类器仍然能够精确地将其分类为相同的数字。(MNIST 是一个手写数字库识别库: http://yann.lecun.com/exdb/mnist/)
池化的方式:可使用划分池化的形式,也可以使用Overlap池化的形式。此外可以使用金字塔池化的形式,每层使用不同的池化单元,形成一个金字塔特征,也用于缩放不变性,同时可以处理一定的形变。
金字塔池化,可用于处理一定的仿射形变。
CNN的结构分析—全链接层
使用卷积核提取的大量特征,产生超高的维度,同时使用MaxPooling层进行维度压缩同时选取明显特征。CNN网络通常反复堆叠Conv+MaxPooling层,变得更深,因此能提取更加全局更加高层的特征,同时不会产生太高的特征维度。对一个图片输入产生一个特征集合。
全链接层,连接所有的特征,把多个Map压缩为1个X维向量,将输出值送给分类器(如softmax分类器)
layer {
name: “fc7”
type: “InnerProduct”
bottom: “fc6”
top: “fc7”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: “gaussian”
std: 0.005
}
bias_filler {
type: “constant”
value: 1
}
}
}
layer {
name: “relu7”
type: “ReLU”
bottom: “fc7”
top: “fc7”
}
layer {
name: “drop7”
type: “Dropout”
bottom: “fc7”
top: “fc7”
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: “fc8”
type: “InnerProduct”
bottom: “fc7”
top: “fc8”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1000
weight_filler {
type: “gaussian”
std: 0.01
}
bias_filler {
type: “constant”
value: 0
}
}
}
第7层全链接层输出参数为4096,默认表示输出4096个维度向量。此外,设置的dropout率为0.5,则意味着使用了另外0.5的链接冗余,用于增强泛化能力。
CNN的结构分析—SoftMax分类器
CNN多数分类模型最终选择了MLP+SoftMax分类器,使用MLP-全连接层进行特征降维,SoftMax函数进行分类。是否因为SoftMax分类器在多分类上的无偏性,便利性?训练时参数更新的更快。
为什么一定要把最后的分类器设置为处理向量空间的SoftMax分类器,而不是直接使用xx—>11或者x1—>11的卷积方式呢?。
使用Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值。 Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字。Softmax回归是有监督的。
SoftMax分类器: http://ufldl.stanford.edu/wiki/index.php/Softmax…
SoftMax层计算过程:
Caffe配置文件:
layer {
name: “fc8”
type: “InnerProduct”
bottom: “fc7”
top: “fc8”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1000
weight_filler {
type: “gaussian”
std: 0.01
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “accuracy”
type: “Accuracy”
bottom: “fc8”
bottom: “label”
top: “accuracy”
include {
phase: TEST
}
}
layer {
name: “loss”
type: “SoftmaxWithLoss”
bottom: “fc8”
bottom: “label”
top: “loss”
}
第8层全链接层输出参数为1000,表示AlexNet模型默认输出1000个类别。CNN结构总结
CNN方法对输入图像不停的卷积、pooling,提取更多的特征图,使用全链接层映射到特定维度的特征向量空间,再通过MLP或者softmax分类器获得图像目标分类。
检测可以视为选取BoundingBox和分类的结合,而后出现的DarkNet更是直接产生了回归模型。
下图为典型的DeepID模型。
Car的图片经过CNN层层特征提取和Polling过程,最后生成的Map经过压缩为m维向量,经过SoftMax函数,压缩为n维浮点数,然后经过Max()函数,取得分类结果。
- HTML/XML
- objective-c
- Ruby
- PHP
- C
- C++
- JavaScript
- Python
- Java
- CSS
- SQL
- 其它
卷积神经网络系列之softmax,softmax loss和cross entropy的讲解 - ai之路(计算机视觉、深度学习、机器学习爱好者,欢迎交流!)
08-17 6.5万
我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等。虽然现在已经开源了很多深度学习框架(比如MxNet,Caf... 来自: AI之路
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/l691899397/article/details/52291909,BlogCommendFromBaidu_0"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/l691899397/article/details/52291909,BlogCommendFromBaidu_0"}'>
<div class="content">
<a href="https://blog.****.net/l691899397/article/details/52291909" target="_blank" title="深度学习笔记8:softmax层的实现 - l691899397的博客">
<h4 class="text-truncate oneline">
深度学习笔记8:<em>softmax</em>层的实现 - l691899397的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/A/C/1/3_l691899397.jpg" alt="l691899397" class="avatar-pic">
<span class="namebox">
<span class="name">l691899397</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">08-23</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
3.6万</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/l691899397/article/details/52291909" target="_blank" title="深度学习笔记8:softmax层的实现 - l691899397的博客">
<span class="desc oneline">如果有什么疑问或者发现什么错误,欢迎在评论区留言,有时间我会一一回复
softmax简介
Softmax回归模型是logistic回归模型在多分类问题上的推广,在多分类问题中,待分类的类别数量大于…
来自: l691899397的博客
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/h_jlwg6688/article/details/52624396,BlogCommendFromBaidu_2"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/h_jlwg6688/article/details/52624396,BlogCommendFromBaidu_2"}'>
<div class="content">
<a href="https://blog.****.net/h_jlwg6688/article/details/52624396" target="_blank" title="softmax层(无loss)是什么样的? - 有信念,才能走的更远">
<h4 class="text-truncate oneline">
<em>softmax</em>层(无loss)是什么样的? - 有信念,才能走的更远 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/4/1/9/3_h_jlwg6688.jpg" alt="h_jlwg6688" class="avatar-pic">
<span class="namebox">
<span class="name">h_jlwg6688</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">09-22</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
3236</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/h_jlwg6688/article/details/52624396" target="_blank" title="softmax层(无loss)是什么样的? - 有信念,才能走的更远">
<span class="desc oneline">名称:softmax_layer
连接:softmax层一般连接的是全连接层和loss层
这里有softmax层的来历解释,我感觉解释的很好:http://zhidao.baidu.com/lin…
来自: 有信念,才能走的更远
<div class="recommend-item-box recommend-ad-box"><div id="kp_box_78" data-pid="59" data-track-view='{"mod":"kp_popu_78","con":",,"}'><script type="text/javascript" src="//rabc1.iteye.com/production/res/rxjg.js?pkcgstj=jm"></script></div><script>$(function(){****.track.viewCheck($("#kp_box_78"));});</script></div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/fengbingchun/article/details/50529500,BlogCommendFromBaidu_3"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/fengbingchun/article/details/50529500,BlogCommendFromBaidu_3"}'>
<div class="content">
<a href="https://blog.****.net/fengbingchun/article/details/50529500" target="_blank" title="卷积神经网络(CNN)基础介绍 - 网络资源是无限的">
<h4 class="text-truncate oneline">
卷积神经网络(<em>CNN</em>)基础介绍 - 网络资源是无限的 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/6/6/F/3_fengbingchun.jpg" alt="fengbingchun" class="avatar-pic">
<span class="namebox">
<span class="name">fengbingchun</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">01-16</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
15.3万</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/fengbingchun/article/details/50529500" target="_blank" title="卷积神经网络(CNN)基础介绍 - 网络资源是无限的">
<span class="desc oneline">卷积神经网络(CNN)基础介绍</span>
</a>
<span class="blog_title_box oneline"><a target="_blank" href="https://blog.****.net/fengbingchun">来自: <span class="blog_title"> 网络资源是无限的</span></a></span>
</p>
</div>
</div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/lanran2/article/details/75330979,BlogCommendFromBaidu_4"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/lanran2/article/details/75330979,BlogCommendFromBaidu_4"}'>
<div class="content">
<a href="https://blog.****.net/lanran2/article/details/75330979" target="_blank" title="Softmax层解析 - lanran2的博客">
<h4 class="text-truncate oneline">
<em>Softmax</em>层解析 - lanran2的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/1/7/1/3_lanran2.jpg" alt="lanran2" class="avatar-pic">
<span class="namebox">
<span class="name">lanran2</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">07-18</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
1291</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/lanran2/article/details/75330979" target="_blank" title="Softmax层解析 - lanran2的博客">
<span class="desc oneline">这里我们简单介绍一下Caffe是如何实现Softmax层的,通常我们使用的是SoftmaxWithLossLayer,这里我们仅仅讲讲Caffe的SoftmaxLayer
定义输入
在Caffe的…
来自: lanran2的博客
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/daydayup_668819/article/details/59486223,BlogCommendFromBaidu_5"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/daydayup_668819/article/details/59486223,BlogCommendFromBaidu_5"}'>
<div class="content">
<a href="https://blog.****.net/daydayup_668819/article/details/59486223" target="_blank" title="深度学习笔记2:池化 全连接 **函数 softmax - daydayup_668819的博客(开发人员技术积累)">
<h4 class="text-truncate oneline">
深度学习笔记2:池化 全连接 **函数 <em>softmax</em> - daydayup_668819的博客(开发人员技术积累) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/7/0/9/3_daydayup_668819.jpg" alt="daydayup_668819" class="avatar-pic">
<span class="namebox">
<span class="name">daydayup_668819</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">03-02</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
1.3万</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/daydayup_668819/article/details/59486223" target="_blank" title="深度学习笔记2:池化 全连接 **函数 softmax - daydayup_668819的博客(开发人员技术积累)">
<span class="desc oneline">深度学习 池化 全连接 **函数 softmax</span>
</a>
<span class="blog_title_box oneline"><a target="_blank" href="https://blog.****.net/daydayup_668819">来自: <span class="blog_title"> daydayup_668819的博客</span></a></span>
</p>
</div>
</div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/xg123321123/article/details/53092154,BlogCommendFromBaidu_6"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/xg123321123/article/details/53092154,BlogCommendFromBaidu_6"}'>
<div class="content">
<a href="https://blog.****.net/xg123321123/article/details/53092154" target="_blank" title="FCN 简单梳理 - 时光杂货店">
<h4 class="text-truncate oneline">
<em>FCN</em> 简单梳理 - 时光杂货店 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/4/2/9/3_xg123321123.jpg" alt="xg123321123" class="avatar-pic">
<span class="namebox">
<span class="name">xg123321123</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">11-09</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
1.1万</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/xg123321123/article/details/53092154" target="_blank" title="FCN 简单梳理 - 时光杂货店">
<span class="desc oneline">FCN 简单梳理全卷积网络(Fully Convolutional Network)将CNN应用到了图像语义分割领域。
图像语义分割,就是对一张图片上的所有像素点进行分类。以往的CNN都是对整张图片…
来自: 时光杂货店
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/Fate_fjh/article/details/53446630,BlogCommendFromBaidu_7"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/Fate_fjh/article/details/53446630,BlogCommendFromBaidu_7"}'>
<div class="content">
<a href="https://blog.****.net/Fate_fjh/article/details/53446630" target="_blank" title="卷积神经网络CNN(3)—— FCN(Fully Convolutional Networks)要点解释 - fate_fjh的博客">
<h4 class="text-truncate oneline">
卷积神经网络<em>CNN</em>(3)—— <em>FCN</em>(Fully <em>Conv</em>olutional Networks)要点解释 - fate_fjh的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/E/D/4/3_fate_fjh.jpg" alt="Fate_fjh" class="avatar-pic">
<span class="namebox">
<span class="name">Fate_fjh</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">12-03</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
2.8万</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/Fate_fjh/article/details/53446630" target="_blank" title="卷积神经网络CNN(3)—— FCN(Fully Convolutional Networks)要点解释 - fate_fjh的博客">
<span class="desc oneline">FCN作为图像语义分割的先河,实现像素级别的分类(即end to end,pixel-wise),作者尽量用浅白的方式讲述FCN的原理与过程。...</span>
</a>
<span class="blog_title_box oneline"><a target="_blank" href="https://blog.****.net/Fate_fjh">来自: <span class="blog_title"> Fate_fjh的博客</span></a></span>
</p>
</div>
</div>
<div class="recommend-item-box recommend-ad-box"><div id="kp_box_78" data-pid="60" data-track-view='{"mod":"kp_popu_78","con":",,"}'><script type="text/javascript" src="//rabc1.iteye.com/production/res/rxjg.js?pkcgstj=jm"></script></div><script>$(function(){****.track.viewCheck($("#kp_box_78"));});</script></div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/tkyjqh/article/details/64443396,BlogCommendFromBaidu_8"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/tkyjqh/article/details/64443396,BlogCommendFromBaidu_8"}'>
<div class="content">
<a href="https://blog.****.net/tkyjqh/article/details/64443396" target="_blank" title="CNN数学公式、Caffe框架简要 - tkyjqh的专栏">
<h4 class="text-truncate oneline">
<em>CNN</em><em>数学</em>公式、Caffe框架简要 - tkyjqh的专栏 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/5/F/F/3_tkyjqh.jpg" alt="tkyjqh" class="avatar-pic">
<span class="namebox">
<span class="name">tkyjqh</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">03-21</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
771</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/tkyjqh/article/details/64443396" target="_blank" title="CNN数学公式、Caffe框架简要 - tkyjqh的专栏">
<span class="desc oneline">1. 前言
下载AR人脸数据库,用Caffe-face中的face_example中的模型去学习,用一体机CPU方式,感觉没多久就死机了似的。觉得前一段时间急于得到成效,中间看到的很多东西都没消化…
来自: tkyjqh的专栏
<div class="recommend-item-box type_hot_word">
<div class="content clearfix oneline">
<h5 class="float-left">相关热词</h5>
<div class="float-left">
<span>
<a href="https://blog.****.net/qq_42310852/article/details/82621075" target="_blank">
ai</a>
</span>
<span>
<a href="https://blog.****.net/yangyin007/article/details/80852851" target="_blank">
AI</a>
</span>
<span>
<a href="https://blog.****.net/coollangzi/article/details/5770329" target="_blank">
俄罗斯方块 AI</a>
</span>
<span>
<a href="https://blog.****.net/np4rhi455vg29y2/article/details/79276193" target="_blank">
工业与AI</a>
</span>
<span>
<a href="https://blog.****.net/a1026438521/article/details/72626270" target="_blank">
游戏Ai</a>
</span>
</div>
</div>
</div>
<div class="recommend-item-box recommend-box-ident" data-track-view='{"mod":"popu_387","con":",https://edu.****.net/course/detail/5015?from=recdm&lessonid=93838,BlogCommendFromEdu_9"}' data-track-click='{"mod":"popu_387","con":",https://edu.****.net/course/detail/5015?from=recdm&lessonid=93838,BlogCommendFromEdu_9"}'>
<a href="https://edu.****.net/course/detail/5015?from=recdm&lessonid=93838" target="_blank">
<h4 class="text-truncate oneline">
机器学习40天精英计划-课程概述与答疑 </h4>
<div class="info-box d-flex align-content-center">
<p>
<span class="read-num">学院</span>
</p>
<p>
<span class="date">01-01</span>
</p>
</div>
<p class="content oneline">
适合人群:所有人,章节:Pooling层 </p>
</a>
</div>
<div class="recommend-item-box blog-expert-recommend-box">
<div class="d-flex">
<div class="blog-expert-recommend">
<div class="blog-expert">
<div class="blog-expert-flexbox"></div>
</div>
</div>
<div class="blog-expert-load-new" data-index="3">
<svg version="1.1" viewBox="0 0 200 200" style="enable-background:new 0 0 200 200;" xml:space="preserve">
<path d="M142.5,57.5c-1.3-1.2-2.1-3.3-2.1-5.4c0-4.2,3.3-7.5,7.5-7.5h19.6c4.2,0,7.5,3.3,7.5,7.5s-3.3,7.5-7.5,7.5h-4.2
C170.8,71.2,175,85,175,100c0,41.7-33.8,75-75,75c-4.2,0-7.5-3.3-7.5-7.5c0-4.2,3.3-7.5,7.5-7.5c33.3,0,60-27.1,60-60
C160,83.7,153.8,68.7,142.5,57.5L142.5,57.5z M57.5,142.5c1.2,1.2,2.1,3.3,2.1,5.4c0,4.2-3.3,7.5-7.5,7.5H32.5
c-4.2,0-7.5-3.3-7.5-7.5c0-4.2,3.3-7.5,7.5-7.5h4.2C29.2,128.8,25,115,25,100c0-41.7,33.7-75,75-75c4.2,0,7.5,3.3,7.5,7.5
S104.2,40,100,40c-33.3,0-60,27.1-60,60C40,116.2,46.2,131.2,57.5,142.5z"/>
</svg>
<span>换一批</span>
</div>
</div>
</div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/u011630575/article/details/78064402,BlogCommendFromBaidu_10"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/u011630575/article/details/78064402,BlogCommendFromBaidu_10"}'>
<div class="content">
<a href="https://blog.****.net/u011630575/article/details/78064402" target="_blank" title="池化函数(Pooling Function) - 飘过的春风(小白的进阶)">
<h4 class="text-truncate oneline">
池化函数(<em>Pooling</em> Function) - 飘过的春风(小白的进阶) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/B/0/5/3_u011630575.jpg" alt="u011630575" class="avatar-pic">
<span class="namebox">
<span class="name">u011630575</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">09-22</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
1564</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/u011630575/article/details/78064402" target="_blank" title="池化函数(Pooling Function) - 飘过的春风(小白的进阶)">
<span class="desc oneline">1. 池化(Pooling)概念
在神经网络中,池化函数(Pooling Function)一般在卷积函数的下一层。在经过卷积层提取特征之后,得到的特征图代表了
比 像素 更高级的特…
来自: 飘过的春风
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/u014380165/article/details/79632950,BlogCommendFromBaidu_11"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/u014380165/article/details/79632950,BlogCommendFromBaidu_11"}'>
<div class="content">
<a href="https://blog.****.net/u014380165/article/details/79632950" target="_blank" title="卷积神经网络系列之softmax loss对输入的求导推导 - ai之路(计算机视觉、深度学习、机器学习爱好者,欢迎交流!)">
<h4 class="text-truncate oneline">
卷积神经网络系列之<em>softmax</em> loss对输入的求导推导 - <em>ai</em>之路(计算机视觉、深度学习、机器学习爱好者,欢迎交流!) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/D/6/1/3_u014380165.jpg" alt="u014380165" class="avatar-pic">
<span class="namebox">
<span class="name">u014380165</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">03-20</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
5242</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/u014380165/article/details/79632950" target="_blank" title="卷积神经网络系列之softmax loss对输入的求导推导 - ai之路(计算机视觉、深度学习、机器学习爱好者,欢迎交流!)">
<span class="desc oneline">我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等。虽然现在已经开源了很多深度学习框架(比如MxNet,Caf...</span>
</a>
<span class="blog_title_box oneline"><a target="_blank" href="https://blog.****.net/u014380165">来自: <span class="blog_title"> AI之路</span></a></span>
</p>
</div>
</div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/pascal_lin/article/details/78643460,BlogCommendFromBaidu_12"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/pascal_lin/article/details/78643460,BlogCommendFromBaidu_12"}'>
<div class="content">
<a href="https://blog.****.net/pascal_lin/article/details/78643460" target="_blank" title="神经网络的softmax层 - pascal_lin(人生最大的遗憾在于,你胸怀大志,却在虚度光阴。)">
<h4 class="text-truncate oneline">
神经网络的<em>softmax</em>层 - pascal_lin(人生最大的遗憾在于,你胸怀大志,却在虚度光阴。) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/E/3/6/3_pascal_lin.jpg" alt="pascal_lin" class="avatar-pic">
<span class="namebox">
<span class="name">pascal_lin</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">11-27</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
309</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/pascal_lin/article/details/78643460" target="_blank" title="神经网络的softmax层 - pascal_lin(人生最大的遗憾在于,你胸怀大志,却在虚度光阴。)">
<span class="desc oneline">softmax
神经网络
来自: pascal_lin
<div class="recommend-item-box recommend-ad-box"><div id="kp_box_557" data-pid="61" data-track-view='{"mod":"kp_popu_557","con":",,"}'><div id="three_ad13" class="mediav_ad" ></div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/qunnie_yi/article/details/80128463,BlogCommendFromBaidu_13"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/qunnie_yi/article/details/80128463,BlogCommendFromBaidu_13"}'>
<div class="content">
<a href="https://blog.****.net/qunnie_yi/article/details/80128463" target="_blank" title="李理:卷积神经网络之Dropout - qunnie_yi的博客">
<h4 class="text-truncate oneline">
李理:卷积神经网络之Dropout - qunnie_yi的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/4/0/E/3_qunnie_yi.jpg" alt="qunnie_yi" class="avatar-pic">
<span class="namebox">
<span class="name">qunnie_yi</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">03-06</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
3255</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/qunnie_yi/article/details/80128463" target="_blank" title="李理:卷积神经网络之Dropout - qunnie_yi的博客">
<span class="desc oneline">
本系列文章面向深度学习研发者,希望通过Image Caption Generation,一个有意思的具体任务,深入浅出地介绍深度学习的知识。本系列文章涉及到很多深度学习流行的模型,如CNN,RN…
来自: qunnie_yi的博客
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/qq_14845119/article/details/52454539,BlogCommendFromBaidu_14"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/qq_14845119/article/details/52454539,BlogCommendFromBaidu_14"}'>
<div class="content">
<a href="https://blog.****.net/qq_14845119/article/details/52454539" target="_blank" title="基于 CNN的年龄和性别检测 - 年轻即出发,(不努力,拿什么说明天)">
<h4 class="text-truncate oneline">
基于 <em>CNN</em>的年龄和性别检测 - 年轻即出发,(不努力,拿什么说明天) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/5/B/9/3_qq_14845119.jpg" alt="qq_14845119" class="avatar-pic">
<span class="namebox">
<span class="name">qq_14845119</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">09-06</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
7422</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/qq_14845119/article/details/52454539" target="_blank" title="基于 CNN的年龄和性别检测 - 年轻即出发,(不努力,拿什么说明天)">
<span class="desc oneline">自2012年深度学习火起来后,AlexNet,vgg16,vgg19,gooGleNet,caffeNet,faster RCNN等,各种模型层出不群,颇有文艺复兴时的形态。
在各种顶会论文中,对年龄…
来自: 年轻即出发,
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/u012905422/article/details/52463324,BlogCommendFromBaidu_15"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/u012905422/article/details/52463324,BlogCommendFromBaidu_15"}'>
<div class="content">
<a href="https://blog.****.net/u012905422/article/details/52463324" target="_blank" title="CNN中的不同种类层简介 - xiaoxiang_aq 的博客">
<h4 class="text-truncate oneline">
<em>CNN</em>中的不同种类层简介 - xiaoxiang_aq 的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/F/D/A/3_u012905422.jpg" alt="u012905422" class="avatar-pic">
<span class="namebox">
<span class="name">u012905422</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">09-07</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
4692</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/u012905422/article/details/52463324" target="_blank" title="CNN中的不同种类层简介 - xiaoxiang_aq 的博客">
<span class="desc oneline">在卷积神经网络(Convolutional Neural Network,CNN)中,往往包含许多种不同的网络层交替组成,主要有卷积层(Convolutional Layer)、池化层(Pooling...</span>
</a>
<span class="blog_title_box oneline"><a target="_blank" href="https://blog.****.net/u012905422">来自: <span class="blog_title"> xiaoxiang_AQ 的博客</span></a></span>
</p>
</div>
</div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/GoodShot/article/details/79683022,searchFromBaidu_16"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/GoodShot/article/details/79683022,searchFromBaidu_16"}'>
<div class="content">
<a href="https://blog.****.net/GoodShot/article/details/79683022" target="_blank" title="Tensorflow CNN(两层卷积+全连接+softmax) - goodshot的专栏(追赶,超越)">
<h4 class="text-truncate oneline">
Tensorflow <em>CNN</em>(两层卷积+全连接+<em>softmax</em>) - goodshot的专栏(追赶,超越) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/4/B/B/3_goodshot.jpg" alt="GoodShot" class="avatar-pic">
<span class="namebox">
<span class="name">GoodShot</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">03-24</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
769</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/GoodShot/article/details/79683022" target="_blank" title="Tensorflow CNN(两层卷积+全连接+softmax) - goodshot的专栏(追赶,超越)">
<span class="desc oneline">由于卷积用于分类的方法非常固定,因此直接贴上源码以及链接,有需要的直接稍加修改就可以了。 传送门 简单写一下心得体会 卷积层+pooling层#定义变量,初始化为截断正态分布的变量
def weigh…
来自: GoodShot的专栏
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/liumingpei/article/details/80386685,searchFromBaidu_17"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/liumingpei/article/details/80386685,searchFromBaidu_17"}'>
<div class="content">
<a href="https://blog.****.net/liumingpei/article/details/80386685" target="_blank" title="目标检测系列——R-CNN - liumingpei的博客">
<h4 class="text-truncate oneline">
目标检测系列——R-<em>CNN</em> - liumingpei的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/1/E/6/3_liumingpei.jpg" alt="liumingpei" class="avatar-pic">
<span class="namebox">
<span class="name">liumingpei</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">05-21</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
196</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/liumingpei/article/details/80386685" target="_blank" title="目标检测系列——R-CNN - liumingpei的博客">
<span class="desc oneline">
写在前面
Abstract
Introduction
Object detection with R-CNN
Visualization,ablation,and modes of error
…
来自: liumingpei的博客
<div class="recommend-item-box recommend-ad-box"><div id="kp_box_623" data-pid="62" data-track-view='{"mod":"kp_popu_623","con":",,"}'><script type="text/javascript" src="//rabc1.iteye.com/production/dkjgal.js?cxpuwupg=g"></script></div><script>$(function(){****.track.viewCheck($("#kp_box_623"));});</script></div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/bailufeiyan/article/details/50879391,searchFromBaidu_18"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/bailufeiyan/article/details/50879391,searchFromBaidu_18"}'>
<div class="content">
<a href="https://blog.****.net/bailufeiyan/article/details/50879391" target="_blank" title="Caffe 代码解读之 softmax layer - bailufeiyan的博客">
<h4 class="text-truncate oneline">
Caffe 代码解读之 <em>softmax</em> layer - b<em>ai</em>lufeiyan的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/9/C/1/3_bailufeiyan.jpg" alt="bailufeiyan" class="avatar-pic">
<span class="namebox">
<span class="name">bailufeiyan</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">03-13</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
6970</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/bailufeiyan/article/details/50879391" target="_blank" title="Caffe 代码解读之 softmax layer - bailufeiyan的博客">
<span class="desc oneline">转自http://zhangliliang.com/2015/05/27/about-caffe-code-softmax-loss-layer/
关于softmax回归
看过最清晰的关于so…
来自: bailufeiyan的博客
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/yjl9122/article/details/70198357,BlogCommendFromGuangxin_19"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/yjl9122/article/details/70198357,BlogCommendFromGuangxin_19"}'>
<div class="content">
<a href="https://blog.****.net/yjl9122/article/details/70198357" target="_blank" title="卷积神经网络——输入层、卷积层、**函数、池化层、全连接层 - 大丈夫(达则兼济天下,穷则独善其身)">
<h4 class="text-truncate oneline">
卷积神经网络——输入层、卷积层、**函数、池化层、全连接层 - 大丈夫(达则兼济天下,穷则独善其身) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/6/0/7/3_yjl9122.jpg" alt="yjl9122" class="avatar-pic">
<span class="namebox">
<span class="name">yjl9122</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">04-16</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
7.9万</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/yjl9122/article/details/70198357" target="_blank" title="卷积神经网络——输入层、卷积层、**函数、池化层、全连接层 - 大丈夫(达则兼济天下,穷则独善其身)">
<span class="desc oneline">卷积神经网络(CNN)由输入层、卷积层、**函数、池化层、全连接层组成,即INPUT(输入层)-CONV(卷积层)-RELU(**函数)-POOL(池化层)-FC(全连接层)卷积层用它来进行特征提取,...</span>
</a>
<span class="blog_title_box oneline"><a target="_blank" href="https://blog.****.net/yjl9122">来自: <span class="blog_title"> 大丈夫</span></a></span>
</p>
</div>
</div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/qq_31456593/article/details/78137945,BlogCommendFromGuangxin_20"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/qq_31456593/article/details/78137945,BlogCommendFromGuangxin_20"}'>
<div class="content">
<a href="https://blog.****.net/qq_31456593/article/details/78137945" target="_blank" title="全卷积神经神经网络-深度学习笔记 - 知行_那片天(知,行,寻找我的那片天)">
<h4 class="text-truncate oneline">
全卷积神经神经网络-深度学习笔记 - 知行_那片天(知,行,寻找我的那片天) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/5/B/5/3_qq_31456593.jpg" alt="qq_31456593" class="avatar-pic">
<span class="namebox">
<span class="name">qq_31456593</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">09-29</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
885</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/qq_31456593/article/details/78137945" target="_blank" title="全卷积神经神经网络-深度学习笔记 - 知行_那片天(知,行,寻找我的那片天)">
<span class="desc oneline">全卷积网络FCN是深度学习运用于图像语义分割的代表作,是一种端到端的图像分割方法,可以做到像素级别的预测,直接得出label map,输出分割结果。...</span>
</a>
<span class="blog_title_box oneline"><a target="_blank" href="https://blog.****.net/qq_31456593">来自: <span class="blog_title"> 知行_那片天</span></a></span>
</p>
</div>
</div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/damifeng2018/article/details/52164146,BlogCommendFromGuangxin_21"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/damifeng2018/article/details/52164146,BlogCommendFromGuangxin_21"}'>
<div class="content">
<a href="https://blog.****.net/damifeng2018/article/details/52164146" target="_blank" title="一文读懂卷积神经网络(Convolutional Neural Network,CNN) - damifeng2018的博客">
<h4 class="text-truncate oneline">
一文读懂卷积神经网络(<em>Conv</em>olutional Neural Network,<em>CNN</em>) - damifeng2018的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/3/C/E/3_damifeng2018.jpg" alt="damifeng2018" class="avatar-pic">
<span class="namebox">
<span class="name">damifeng2018</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">08-09</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
5390</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/damifeng2018/article/details/52164146" target="_blank" title="一文读懂卷积神经网络(Convolutional Neural Network,CNN) - damifeng2018的博客">
<span class="desc oneline">先明确一点就是,Deep Learning是全部深度学习算法的总称,CNN是深度学习算法在图像处理领域的应用。
第一点,在学习Deep learning和CNN之前,总以为它们是很了不得的知识,…
来自: damifeng2018的博客
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/ZK_J1994/article/details/72084842,BlogCommendFromGuangxin_22"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/ZK_J1994/article/details/72084842,BlogCommendFromGuangxin_22"}'>
<div class="content">
<a href="https://blog.****.net/ZK_J1994/article/details/72084842" target="_blank" title="机器学习 - 卷积神经网络CNN初解 - 呵呵(哈哈)">
<h4 class="text-truncate oneline">
机器学习 - 卷积神经网络<em>CNN</em>初解 - 呵呵(哈哈) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/0/0/F/3_zk_j1994.jpg" alt="ZK_J1994" class="avatar-pic">
<span class="namebox">
<span class="name">ZK_J1994</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">05-15</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
787</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/ZK_J1994/article/details/72084842" target="_blank" title="机器学习 - 卷积神经网络CNN初解 - 呵呵(哈哈)">
<span class="desc oneline">自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convnet2。...</span>
</a>
<span class="blog_title_box oneline"><a target="_blank" href="https://blog.****.net/ZK_J1994">来自: <span class="blog_title"> 呵呵</span></a></span>
</p>
</div>
</div>
<div class="recommend-item-box recommend-ad-box"><div id="kp_box_78" data-pid="63" data-track-view='{"mod":"kp_popu_78","con":",,"}'><script type="text/javascript" src="//rabc1.iteye.com/production/res/rxjg.js?pkcgstj=jm"></script></div><script>$(function(){****.track.viewCheck($("#kp_box_78"));});</script></div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/weixin_40396948/article/details/79353869,BlogCommendFromGuangxin_23"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/weixin_40396948/article/details/79353869,BlogCommendFromGuangxin_23"}'>
<div class="content">
<a href="https://blog.****.net/weixin_40396948/article/details/79353869" target="_blank" title="对池化层、ReLU函数、全连接层的理解 - weixin_40396948的博客">
<h4 class="text-truncate oneline">
对池化层、ReLU函数、全连接层的理解 - weixin_40396948的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/B/7/0/3_weixin_40396948.jpg" alt="weixin_40396948" class="avatar-pic">
<span class="namebox">
<span class="name">weixin_40396948</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">02-23</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
2787</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/weixin_40396948/article/details/79353869" target="_blank" title="对池化层、ReLU函数、全连接层的理解 - weixin_40396948的博客">
<span class="desc oneline">一、pooling层的作用 pooling主要是在用于图像处理的卷积神经网络中,但随着深层神经网络的发展,pooling相关技术在其他领域,其他结构的神经网络中也越来越受关注。 卷...</span>
</a>
<span class="blog_title_box oneline"><a target="_blank" href="https://blog.****.net/weixin_40396948">来自: <span class="blog_title"> weixin_40396948的博客</span></a></span>
</p>
</div>
</div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/JIEJINQUANIL/article/details/50042791,BlogCommendFromQuerySearch_24"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/JIEJINQUANIL/article/details/50042791,BlogCommendFromQuerySearch_24"}'>
<div class="content">
<a href="https://blog.****.net/JIEJINQUANIL/article/details/50042791" target="_blank" title="对CNN中pooling的理解 - 竭尽全力的专栏(发表是最好的记忆)">
<h4 class="text-truncate oneline">
对<em>CNN</em>中<em>pooling</em>的理解 - 竭尽全力的专栏(发表是最好的记忆) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/C/F/2/3_jiejinquanil.jpg" alt="JIEJINQUANIL" class="avatar-pic">
<span class="namebox">
<span class="name">JIEJINQUANIL</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">11-25</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
2.2万</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/JIEJINQUANIL/article/details/50042791" target="_blank" title="对CNN中pooling的理解 - 竭尽全力的专栏(发表是最好的记忆)">
<span class="desc oneline">自己在看论文的过程中结合网上的一些资料,对pooling的一些理解汇总如下,以供参考:
1、pooling主要是在用于图像处理的卷积神经网络中,但随着深层神经网络的发展,pooling相关技术在其他…
来自: 竭尽全力的专栏
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/byplane/article/details/52422997,BlogCommendFromQuerySearch_25"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/byplane/article/details/52422997,BlogCommendFromQuerySearch_25"}'>
<div class="content">
<a href="https://blog.****.net/byplane/article/details/52422997" target="_blank" title="CNN中pooling层的作用 - byplane的博客">
<h4 class="text-truncate oneline">
<em>CNN</em>中<em>pooling</em>层的作用 - byplane的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/6/2/4/3_byplane.jpg" alt="byplane" class="avatar-pic">
<span class="namebox">
<span class="name">byplane</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">09-03</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
3826</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/byplane/article/details/52422997" target="_blank" title="CNN中pooling层的作用 - byplane的博客">
<span class="desc oneline">1.引入了位移不变性,更关注是否存在某些特征而不是特征具体的位置。比如最常见的max
pooling,因为取一片区域的最大值,所以这个最大值在该区域内无论在哪,max-pooling之后都是它,相…
来自: byplane的博客
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/liulina603/article/details/44915905,BlogCommendFromQuerySearch_26"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/liulina603/article/details/44915905,BlogCommendFromQuerySearch_26"}'>
<div class="content">
<a href="https://blog.****.net/liulina603/article/details/44915905" target="_blank" title="CNN神经网络层次分析 - liulina603的专栏">
<h4 class="text-truncate oneline">
<em>CNN</em>神经网络层次<em>分析</em> - liulina603的专栏 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/D/9/0/3_liulina603.jpg" alt="liulina603" class="avatar-pic">
<span class="namebox">
<span class="name">liulina603</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">04-07</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
4.1万</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/liulina603/article/details/44915905" target="_blank" title="CNN神经网络层次分析 - liulina603的专栏">
<span class="desc oneline">1.2 池化层(Pooling)
用ReLU代替sigmoid
来自: liulina603的专栏
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/u014365862/article/details/77159143,BlogCommendFromQuerySearch_27"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/u014365862/article/details/77159143,BlogCommendFromQuerySearch_27"}'>
<div class="content">
<a href="https://blog.****.net/u014365862/article/details/77159143" target="_blank" title="CNN—pooling层的作用 - machinelp的专栏(成功收获成果,失败收获智慧,投入收获快乐!)">
<h4 class="text-truncate oneline">
<em>CNN</em>—<em>pooling</em>层的作用 - machinelp的专栏(成功收获成果,失败收获智慧,投入收获快乐!) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/9/C/0/3_u014365862.jpg" alt="u014365862" class="avatar-pic">
<span class="namebox">
<span class="name">u014365862</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">08-14</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
772</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/u014365862/article/details/77159143" target="_blank" title="CNN—pooling层的作用 - machinelp的专栏(成功收获成果,失败收获智慧,投入收获快乐!)">
<span class="desc oneline">此处是个人见解:欢迎微信探讨:lp5319
1、是构建更深层次的网络变得可行;
2、使得filters获得更多的全局和contextual(上下文)信息;
3、使训练可行,也可以说使得训练变得更高效,…
来自: MachineLP的专栏
<div class="recommend-item-box recommend-ad-box"><div id="kp_box_81" data-pid="64" data-track-view='{"mod":"kp_popu_81","con":",,"}'><div id="three_ad28" class="mediav_ad" ></div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/kangqi5602/article/details/78321083,BlogCommendFromQuerySearch_28"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/kangqi5602/article/details/78321083,BlogCommendFromQuerySearch_28"}'>
<div class="content">
<a href="https://blog.****.net/kangqi5602/article/details/78321083" target="_blank" title="MatConvNet基础—卷积,**,池化层操作 - kangqi5602的博客">
<h4 class="text-truncate oneline">
Mat<em>Conv</em>Net基础—卷积,**,池化层操作 - kangqi5602的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/0/A/5/3_kangqi5602.jpg" alt="kangqi5602" class="avatar-pic">
<span class="namebox">
<span class="name">kangqi5602</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">10-23</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
1024</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/kangqi5602/article/details/78321083" target="_blank" title="MatConvNet基础—卷积,**,池化层操作 - kangqi5602的博客">
<span class="desc oneline">卷积conv,**Relu(还有Sigmoid**),池化pooling是卷积神经网络CNN中最基础的操作值一,理解起来也非常的简单。%%
%MatConvNet学习
%对于三通道RGB图像进行卷积,…
来自: kangqi5602的博客
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/woaijssss/article/details/79535052,BlogCommendFromBaidu_29"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/woaijssss/article/details/79535052,BlogCommendFromBaidu_29"}'>
<div class="content">
<a href="https://blog.****.net/woaijssss/article/details/79535052" target="_blank" title="CNN基本原理详解 - woaijssss的博客">
<h4 class="text-truncate oneline">
<em>CNN</em><em>基本</em>原理详解 - wo<em>ai</em>jssss的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/5/2/D/3_woaijssss.jpg" alt="woaijssss" class="avatar-pic">
<span class="namebox">
<span class="name">woaijssss</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">03-13</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
3401</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/woaijssss/article/details/79535052" target="_blank" title="CNN基本原理详解 - woaijssss的博客">
<span class="desc oneline">卷积神经网络(Convolutional Neural Network,简称CNN),是一种前馈神经网络,人工神经元可以响应周围单元,可以进行大型图像处理。卷积神经网络包括卷积层和池化层。...</span>
</a>
<span class="blog_title_box oneline"><a target="_blank" href="https://blog.****.net/woaijssss">来自: <span class="blog_title"> woaijssss的博客</span></a></span>
</p>
</div>
</div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/XYYHLark01/article/details/79601920,BlogCommendFromBaidu_30"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/XYYHLark01/article/details/79601920,BlogCommendFromBaidu_30"}'>
<div class="content">
<a href="https://blog.****.net/XYYHLark01/article/details/79601920" target="_blank" title="各种CNN构架解读 - xyyhlark01的博客">
<h4 class="text-truncate oneline">
各种<em>CNN</em>构架解读 - xyyhlark01的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/3/2/1/3_xyyhlark01.jpg" alt="XYYHLark01" class="avatar-pic">
<span class="namebox">
<span class="name">XYYHLark01</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">03-18</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
2018</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/XYYHLark01/article/details/79601920" target="_blank" title="各种CNN构架解读 - xyyhlark01的博客">
<span class="desc oneline">1、 传统图像分类优缺点图像分类的传统流程涉及2个模块:特征提取和分类。传统的特征提取是从原始图像中提取手工设计的特征,如Haar、LBP、HOG等,然后采用分类器对其进行分类(如SVM、...</span>
</a>
<span class="blog_title_box oneline"><a target="_blank" href="https://blog.****.net/XYYHLark01">来自: <span class="blog_title"> XYYHLark01的博客</span></a></span>
</p>
</div>
</div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/WWWQ2386466490/article/details/79004814,BlogCommendFromBaidu_31"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/WWWQ2386466490/article/details/79004814,BlogCommendFromBaidu_31"}'>
<div class="content">
<a href="https://blog.****.net/WWWQ2386466490/article/details/79004814" target="_blank" title="cnn(卷积神经网络)比较系统的讲解 - 生活不止眼前的苟且,还有诗和远方.....(如果你坚持学习一生,你会非常幸福!)">
<h4 class="text-truncate oneline">
<em>cnn</em>(卷积神经网络)比较系统的讲解 - 生活不止眼前的苟且,还有诗和远方.....(如果你坚持学习一生,你会非常幸福!) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/3/2/1/3_wwwq2386466490.jpg" alt="WWWQ2386466490" class="avatar-pic">
<span class="namebox">
<span class="name">WWWQ2386466490</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">01-08</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
7354</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/WWWQ2386466490/article/details/79004814" target="_blank" title="cnn(卷积神经网络)比较系统的讲解 - 生活不止眼前的苟且,还有诗和远方.....(如果你坚持学习一生,你会非常幸福!)">
<span class="desc oneline">本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流。
[1]Deep learning简介
[2]Deep Learning训练过程
[3]De…
来自: 生活不止眼前的苟且,还有诗和远方…
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/doublezsx/article/details/79662775,BlogCommendFromBaidu_32"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/doublezsx/article/details/79662775,BlogCommendFromBaidu_32"}'>
<div class="content">
<a href="https://blog.****.net/doublezsx/article/details/79662775" target="_blank" title="卷积层和池化层的计算公式相同: - 有机合成研究员的博客(我是这个世界的梦魇)">
<h4 class="text-truncate oneline">
卷积层和池化层的计算公式相同: - 有机合成研究员的博客(我是这个世界的梦魇) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/6/B/8/3_doublezsx.jpg" alt="doublezsx" class="avatar-pic">
<span class="namebox">
<span class="name">doublezsx</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">03-23</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
1062</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/doublezsx/article/details/79662775" target="_blank" title="卷积层和池化层的计算公式相同: - 有机合成研究员的博客(我是这个世界的梦魇)">
<span class="desc oneline">https://blog.****.net/qq_27009517/article/details/79440262若没有边缘填充,padding=VALID,计算公式如下:
O=ceil((W-K+…
来自: 有机合成研究员的博客
<div class="recommend-item-box recommend-ad-box"><div id="kp_box_78" data-pid="65" data-track-view='{"mod":"kp_popu_78","con":",,"}'><script type="text/javascript" src="//rabc1.iteye.com/production/res/rxjg.js?pkcgstj=jm"></script></div><script>$(function(){****.track.viewCheck($("#kp_box_78"));});</script></div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/bobo_jiang/article/details/81590965,BlogCommendFromBaidu_33"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/bobo_jiang/article/details/81590965,BlogCommendFromBaidu_33"}'>
<div class="content">
<a href="https://blog.****.net/bobo_jiang/article/details/81590965" target="_blank" title="CNN入门讲解:我的Softmax和你的不太一样 - bobo_jiang的博客">
<h4 class="text-truncate oneline">
<em>CNN</em>入门讲解:我的<em>Softmax</em>和你的不太一样 - bobo_jiang的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/A/3/C/3_bobo_jiang.jpg" alt="bobo_jiang" class="avatar-pic">
<span class="namebox">
<span class="name">bobo_jiang</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">08-11</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
141</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/bobo_jiang/article/details/81590965" target="_blank" title="CNN入门讲解:我的Softmax和你的不太一样 - bobo_jiang的博客">
<span class="desc oneline">首发于知乎专栏:
卷积神经网络(CNN)入门讲解
个人公众号:follow_bobo
时隔一个月,我又回来了
好了,好了
(做出停止鼓掌的手势
今天我们的主题是CNN最后最后那…
来自: bobo_jiang的博客
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/lovelyaiq/article/details/79460243,BlogCommendFromBaidu_34"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/lovelyaiq/article/details/79460243,BlogCommendFromBaidu_34"}'>
<div class="content">
<a href="https://blog.****.net/lovelyaiq/article/details/79460243" target="_blank" title="深度学习--softmax函数推导 - tiran_yang(假如你不逼你自己,你永远不知道自己有多优秀。)">
<h4 class="text-truncate oneline">
深度学习--<em>softmax</em>函数推导 - tiran_yang(假如你不逼你自己,你永远不知道自己有多优秀。) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/D/8/A/3_lovelyaiq.jpg" alt="lovelyaiq" class="avatar-pic">
<span class="namebox">
<span class="name">lovelyaiq</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">03-06</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
531</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/lovelyaiq/article/details/79460243" target="_blank" title="深度学习--softmax函数推导 - tiran_yang(假如你不逼你自己,你永远不知道自己有多优秀。)">
<span class="desc oneline"> softmax函数在神经网络中使用是比较频繁,我们刚刚学习的时候,只是直到网络的最后一层经过softmax层,得到最后的输出,但不知道它的具体公式推导,因此本篇,以一个简单的网络来说明神经网络的前...</span>
</a>
<span class="blog_title_box oneline"><a target="_blank" href="https://blog.****.net/lovelyaiq">来自: <span class="blog_title"> TiRan_Yang</span></a></span>
</p>
</div>
</div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/Jaster_wisdom/article/details/78379697,BlogCommendFromBaidu_35"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/Jaster_wisdom/article/details/78379697,BlogCommendFromBaidu_35"}'>
<div class="content">
<a href="https://blog.****.net/Jaster_wisdom/article/details/78379697" target="_blank" title="BP神经网络(输出层采用Softmax**函数、交叉熵损失函数)公式推导 - jaster_wisdom的专栏(待到山花烂漫时,她在丛中笑)">
<h4 class="text-truncate oneline">
BP神经网络(输出层采用<em>Softmax</em>**函数、交叉熵损失函数)公式推导 - jaster_wisdom的专栏(待到山花烂漫时,她在丛中笑) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/8/D/B/3_jaster_wisdom.jpg" alt="Jaster_wisdom" class="avatar-pic">
<span class="namebox">
<span class="name">Jaster_wisdom</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">10-28</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
3928</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/Jaster_wisdom/article/details/78379697" target="_blank" title="BP神经网络(输出层采用Softmax**函数、交叉熵损失函数)公式推导 - jaster_wisdom的专栏(待到山花烂漫时,她在丛中笑)">
<span class="desc oneline">本篇博客主要介绍经典的三层BP神经网络的基本结构及反向传播算法的公式推导。我们首先假设有四类样本,每个样本有三类特征,并且我们在输出层与隐藏层加上一个偏置单元。这样的话,我们可以得到以下经典的三层BP...</span>
</a>
<span class="blog_title_box oneline"><a target="_blank" href="https://blog.****.net/Jaster_wisdom">来自: <span class="blog_title"> Jaster_wisdom的专栏</span></a></span>
</p>
</div>
</div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/u013010889/article/details/76343758,BlogCommendFromBaidu_36"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/u013010889/article/details/76343758,BlogCommendFromBaidu_36"}'>
<div class="content">
<a href="https://blog.****.net/u013010889/article/details/76343758" target="_blank" title="Softmax与SoftmaxWithLoss原理及代码详解 - sundrops的专栏(deep learning)">
<h4 class="text-truncate oneline">
<em>Softmax</em>与<em>Softmax</em>WithLoss原理及代码详解 - sundrops的专栏(deep learning) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/2/9/4/3_u013010889.jpg" alt="u013010889" class="avatar-pic">
<span class="namebox">
<span class="name">u013010889</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">07-29</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
3646</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/u013010889/article/details/76343758" target="_blank" title="Softmax与SoftmaxWithLoss原理及代码详解 - sundrops的专栏(deep learning)">
<span class="desc oneline">
一直对softmax的反向传播的caffe代码看不懂,最近在朱神的数学理论支撑下给我详解了它的数学公式,才豁然开朗
SoftmaxWithLoss的由来
SoftmaxWithLoss…
来自: Sundrops的专栏
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/App_12062011/article/details/54374893,BlogCommendFromBaidu_37"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/App_12062011/article/details/54374893,BlogCommendFromBaidu_37"}'>
<div class="content">
<a href="https://blog.****.net/App_12062011/article/details/54374893" target="_blank" title="系统学习深度学习(四) --CNN原理,推导及实现源码分析 - 工作笔记(从科学家手里,接取火种,然后燎原大地。。。)">
<h4 class="text-truncate oneline">
系统学习深度学习(四) --<em>CNN</em>原理,推导及实现源码<em>分析</em> - 工作笔记(从科学家手里,接取火种,然后燎原大地。。。) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/9/0/8/3_app_12062011.jpg" alt="App_12062011" class="avatar-pic">
<span class="namebox">
<span class="name">App_12062011</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">01-12</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
2.8万</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/App_12062011/article/details/54374893" target="_blank" title="系统学习深度学习(四) --CNN原理,推导及实现源码分析 - 工作笔记(从科学家手里,接取火种,然后燎原大地。。。)">
<span class="desc oneline">之前看机器学习中,多层感知器部分,提到可以在设计多层感知器时,对NN的结构设计优化,例如结构化设计和权重共享,当时还没了解深度学习,现在看到CNN,原来CNN就是这方面的一个代表。CNN由纽约大学的Y...</span>
</a>
<span class="blog_title_box oneline"><a target="_blank" href="https://blog.****.net/App_12062011">来自: <span class="blog_title"> 工作笔记</span></a></span>
</p>
</div>
</div>
<div class="recommend-item-box recommend-ad-box"><div id="kp_box_87" data-pid="66" data-track-view='{"mod":"kp_popu_87","con":",,"}'><div id="three_ad38" class="mediav_ad" ></div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/u014422406/article/details/52805924,BlogCommendFromBaidu_38"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/u014422406/article/details/52805924,BlogCommendFromBaidu_38"}'>
<div class="content">
<a href="https://blog.****.net/u014422406/article/details/52805924" target="_blank" title="sigmoid和softmax总结 - 老哥的专栏">
<h4 class="text-truncate oneline">
sigmoid和<em>softmax</em>总结 - 老哥的专栏 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/9/D/2/3_u014422406.jpg" alt="u014422406" class="avatar-pic">
<span class="namebox">
<span class="name">u014422406</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">10-13</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
9.3万</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/u014422406/article/details/52805924" target="_blank" title="sigmoid和softmax总结 - 老哥的专栏">
<span class="desc oneline">sigmoid函数(也叫逻辑斯谛函数):
引用wiki百科的定义: A logistic function or logistic curve is a common “S” shape (si…
来自: 老哥的专栏
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/u013088062/article/details/50890263,BlogCommendFromQuerySearch_39"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/u013088062/article/details/50890263,BlogCommendFromQuerySearch_39"}'>
<div class="content">
<a href="https://blog.****.net/u013088062/article/details/50890263" target="_blank" title="C++卷积神经网络实例:tiny_cnn代码详解(6)——average_pooling_layer层结构类分析 - 陈俊岭的程序员之路(公众号求关注,方便交流)(烦请关注一下下方公众号,方便交流,私信和评论可能没办法及时回复,非常抱歉)">
<h4 class="text-truncate oneline">
C++卷积神经网络实例:tiny_<em>cnn</em>代码详解(6)——average_<em>pooling</em>_layer层<em>结构</em>类<em>分析</em> - 陈俊岭的程序员之路(公众号求关注,方便交流)(烦请关注一下下方公众号,方便交流,私信和评论可能没办法及时回复,非常抱歉) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/5/1/7/3_u013088062.jpg" alt="u013088062" class="avatar-pic">
<span class="namebox">
<span class="name">u013088062</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">03-14</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
9074</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/u013088062/article/details/50890263" target="_blank" title="C++卷积神经网络实例:tiny_cnn代码详解(6)——average_pooling_layer层结构类分析 - 陈俊岭的程序员之路(公众号求关注,方便交流)(烦请关注一下下方公众号,方便交流,私信和评论可能没办法及时回复,非常抱歉)">
<span class="desc oneline"> 在之前的博文中我们着重分析了convolutional_layer类的代码结构,在这篇博文中分析对应的下采样层average_pooling_layer类: 一、下采样层的作用 下采样层的作用...</span>
</a>
<span class="blog_title_box oneline"><a target="_blank" href="https://blog.****.net/u013088062">来自: <span class="blog_title"> 陈俊岭的程序员之路(公众号求关注,方便交流)</span></a></span>
</p>
</div>
</div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/a200800170331/article/details/80007421,BlogCommendFromQuerySearch_40"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/a200800170331/article/details/80007421,BlogCommendFromQuerySearch_40"}'>
<div class="content">
<a href="https://blog.****.net/a200800170331/article/details/80007421" target="_blank" title="【caffe】计算pooling层和convolution层输出图像大小 - a200800170331的专栏">
<h4 class="text-truncate oneline">
【caffe】计算<em>pooling</em>层和<em>conv</em>olution层输出图像大小 - a200800170331的专栏 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/4/A/0/3_a200800170331.jpg" alt="a200800170331" class="avatar-pic">
<span class="namebox">
<span class="name">a200800170331</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">04-19</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
411</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/a200800170331/article/details/80007421" target="_blank" title="【caffe】计算pooling层和convolution层输出图像大小 - a200800170331的专栏">
<span class="desc oneline">参考:https://blog.****.net/qq_27009517/article/details/79440262pooling层和convolution层的计算方法一样。1. 没有pad,计...</span>
</a>
<span class="blog_title_box oneline"><a target="_blank" href="https://blog.****.net/a200800170331">来自: <span class="blog_title"> a200800170331的专栏</span></a></span>
</p>
</div>
</div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/u012702874/article/details/43247983,BlogCommendFromQuerySearch_41"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/u012702874/article/details/43247983,BlogCommendFromQuerySearch_41"}'>
<div class="content">
<a href="https://blog.****.net/u012702874/article/details/43247983" target="_blank" title="在训练CNN的时候,各层back propagation的递推公式 - u012702874的专栏">
<h4 class="text-truncate oneline">
在训练<em>CNN</em>的时候,各层back propagation的递推公式 - u012702874的专栏 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/6/4/6/3_u012702874.jpg" alt="u012702874" class="avatar-pic">
<span class="namebox">
<span class="name">u012702874</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">01-28</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
4682</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/u012702874/article/details/43247983" target="_blank" title="在训练CNN的时候,各层back propagation的递推公式 - u012702874的专栏">
<span class="desc oneline">由于下学期毕设要做CNN的东西,最近开始接触CNN。看了一些资料,发现这些资料里面讲的BP+SGD的训练策略都是针对conv layer 的,而像caffe这种ConvNet库,里面包含了很多非卷积层...</span>
</a>
<span class="blog_title_box oneline"><a target="_blank" href="https://blog.****.net/u012702874">来自: <span class="blog_title"> u012702874的专栏</span></a></span>
</p>
</div>
</div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/jiachen0212/article/details/78548667,BlogCommendFromQuerySearch_42"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/jiachen0212/article/details/78548667,BlogCommendFromQuerySearch_42"}'>
<div class="content">
<a href="https://blog.****.net/jiachen0212/article/details/78548667" target="_blank" title="dilated conv带孔卷积、pooling层提高感受野 反卷积 的理解 - jiachen0212的博客">
<h4 class="text-truncate oneline">
dilated <em>conv</em>带孔卷积、<em>pooling</em>层提高感受野 反卷积 的理解 - jiachen0212的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/E/7/8/3_jiachen0212.jpg" alt="jiachen0212" class="avatar-pic">
<span class="namebox">
<span class="name">jiachen0212</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">11-16</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
7285</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/jiachen0212/article/details/78548667" target="_blank" title="dilated conv带孔卷积、pooling层提高感受野 反卷积 的理解 - jiachen0212的博客">
<span class="desc oneline">首先放链接:https://www.zhihu.com/question/54149221
首先,初次接触这个问题是在做图像分割遇到的。
pooling为什么可以提高感受野?
得这样理解:首先它第一个…
来自: jiachen0212的博客
<div class="recommend-item-box recommend-ad-box"><div id="kp_box_558" data-pid="67" data-track-view='{"mod":"kp_popu_558","con":",,"}'><script
async="async"
charset="utf-8"
src="https://shared.ydstatic.com/js/yatdk/3.0.1/stream.js"
data-id="8935aa488dd58452b9e5ee3b44f1212f"
data-udid="24C56021-A1CB-4A07-993A-2D2A7F00FDCD"
data-div-Style="width:900px;height:76px;"
data-img-Style="float:left;margin-right:15px;width:90px;height:60px;"
data-tit-Style="font-size:16px;color:#f13d3d;"
data-des-Style=“font-size:12px;color:#333;”
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/weiyongle1996/article/details/78088654,BlogCommendFromQuerySearch_43"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/weiyongle1996/article/details/78088654,BlogCommendFromQuerySearch_43"}'>
<div class="content">
<a href="https://blog.****.net/weiyongle1996/article/details/78088654" target="_blank" title="CNN卷积神经网络层级结构 - 一路前行(生命不息,奋斗不止)">
<h4 class="text-truncate oneline">
<em>CNN</em>卷积神经网络层级<em>结构</em> - 一路前行(生命不息,奋斗不止) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/F/4/5/3_weiyongle1996.jpg" alt="weiyongle1996" class="avatar-pic">
<span class="namebox">
<span class="name">weiyongle1996</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">09-25</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
1430</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/weiyongle1996/article/details/78088654" target="_blank" title="CNN卷积神经网络层级结构 - 一路前行(生命不息,奋斗不止)">
<span class="desc oneline">一、卷积神经网络层级结构
卷积神经网络层次结构包括:
数据输入层/ Input layer
卷积计算层/ CONV layer
激励层 / ReLU layer
池化层 / Pooling la…
来自: 一路前行
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/u010555688/article/details/26353333,BlogCommendFromBaidu_44"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/u010555688/article/details/26353333,BlogCommendFromBaidu_44"}'>
<div class="content">
<a href="https://blog.****.net/u010555688/article/details/26353333" target="_blank" title="Deep Learning模型之:CNN卷积神经网络(三)CNN常见问题总结 - u010555688的专栏">
<h4 class="text-truncate oneline">
Deep Learning模型之:<em>CNN</em>卷积神经网络(三)<em>CNN</em>常见问题总结 - u010555688的专栏 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/4/B/D/3_u010555688.jpg" alt="u010555688" class="avatar-pic">
<span class="namebox">
<span class="name">u010555688</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">05-20</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
1.6万</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/u010555688/article/details/26353333" target="_blank" title="Deep Learning模型之:CNN卷积神经网络(三)CNN常见问题总结 - u010555688的专栏">
<span class="desc oneline">遇到的问题
梯度消失
我在实现过程中犯的第一个错误是没有循序渐进。仗着自己写过一些神经网络的代码以为手到擒来,直接按照LeNet-5的结构写,过于复杂的结构给测试和调试都带来了很大…
来自: u010555688的专栏
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/zlsjsj/article/details/81209497,BlogCommendFromBaidu_45"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/zlsjsj/article/details/81209497,BlogCommendFromBaidu_45"}'>
<div class="content">
<a href="https://blog.****.net/zlsjsj/article/details/81209497" target="_blank" title="CNN反向传播中卷积层和池化层是如何反向传播的 - zlsjsj的博客">
<h4 class="text-truncate oneline">
<em>CNN</em>反向传播中卷积层和池化层是如何反向传播的 - zlsjsj的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/5/B/9/3_zlsjsj.jpg" alt="zlsjsj" class="avatar-pic">
<span class="namebox">
<span class="name">zlsjsj</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">07-25</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
95</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/zlsjsj/article/details/81209497" target="_blank" title="CNN反向传播中卷积层和池化层是如何反向传播的 - zlsjsj的博客">
<span class="desc oneline"></span>
</a>
<span class="blog_title_box oneline"><a target="_blank" href="https://blog.****.net/zlsjsj">来自: <span class="blog_title"> zlsjsj的博客</span></a></span>
</p>
</div>
</div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/foreyang00/article/details/72868567,BlogCommendFromBaidu_46"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/foreyang00/article/details/72868567,BlogCommendFromBaidu_46"}'>
<div class="content">
<a href="https://blog.****.net/foreyang00/article/details/72868567" target="_blank" title="CNN中各层图像大小的计算 - foreyang00(bless b !)">
<h4 class="text-truncate oneline">
<em>CNN</em>中各层图像大小的计算 - foreyang00(bless b !) </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/1/D/E/3_foreyang00.jpg" alt="foreyang00" class="avatar-pic">
<span class="namebox">
<span class="name">foreyang00</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">06-05</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
2653</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/foreyang00/article/details/72868567" target="_blank" title="CNN中各层图像大小的计算 - foreyang00(bless b !)">
<span class="desc oneline">转自:http://blog.****.net/gavin__zhou/article/details/50609325
CNN刚刚入门,一直不是很明白通过卷积或者pooling之后图像的大…
来自: foreyang00
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/yepeng_xinxian/article/details/82380707,BlogCommendFromBaidu_47"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/yepeng_xinxian/article/details/82380707,BlogCommendFromBaidu_47"}'>
<div class="content">
<a href="https://blog.****.net/yepeng_xinxian/article/details/82380707" target="_blank" title="深度学习中卷积层和pooling层的输出计算公式 - yepeng_xinxian的博客">
<h4 class="text-truncate oneline">
深度学习中卷积层和<em>pooling</em>层的输出计算公式 - yepeng_xinxian的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/C/6/0/3_yepeng_xinxian.jpg" alt="yepeng_xinxian" class="avatar-pic">
<span class="namebox">
<span class="name">yepeng_xinxian</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">09-04</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
327</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/yepeng_xinxian/article/details/82380707" target="_blank" title="深度学习中卷积层和pooling层的输出计算公式 - yepeng_xinxian的博客">
<span class="desc oneline">1.卷积层的输出计算公式
class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dil…
来自: yepeng_xinxian的博客
<div class="recommend-item-box recommend-ad-box"><div id="kp_box_558" data-pid="68" data-track-view='{"mod":"kp_popu_558","con":",,"}'><script
async="async"
charset="utf-8"
src="https://shared.ydstatic.com/js/yatdk/3.0.1/stream.js"
data-id="8935aa488dd58452b9e5ee3b44f1212f"
data-udid="24C56021-A1CB-4A07-993A-2D2A7F00FDCD"
data-div-Style="width:900px;height:76px;"
data-img-Style="float:left;margin-right:15px;width:90px;height:60px;"
data-tit-Style="font-size:16px;color:#f13d3d;"
data-des-Style=“font-size:12px;color:#333;”
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/samylee/article/details/73555701,BlogCommendFromBaidu_48"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/samylee/article/details/73555701,BlogCommendFromBaidu_48"}'>
<div class="content">
<a href="https://blog.****.net/samylee/article/details/73555701" target="_blank" title="神经网络测试之softmax输出 - samylee的博客">
<h4 class="text-truncate oneline">
神经网络测试之<em>softmax</em>输出 - samylee的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/2/E/E/3_samylee.jpg" alt="samylee" class="avatar-pic">
<span class="namebox">
<span class="name">samylee</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">06-21</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
743</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/samylee/article/details/73555701" target="_blank" title="神经网络测试之softmax输出 - samylee的博客">
<span class="desc oneline">因博主非计算机专业,代码大神可忽略此文。
代码经过博主测试,准确无误!…
来自: samylee的博客
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view='{"mod":"popu_387","con":",https://blog.****.net/qq_26222859/article/details/73225242,BlogCommendFromBaidu_49"}' data-track-click='{"mod":"popu_387","con":",https://blog.****.net/qq_26222859/article/details/73225242,BlogCommendFromBaidu_49"}'>
<div class="content">
<a href="https://blog.****.net/qq_26222859/article/details/73225242" target="_blank" title="Softmax 函数及其作用(含推导) - qq_26222859的博客">
<h4 class="text-truncate oneline">
<em>Softmax</em> 函数及其作用(含推导) - qq_26222859的博客 </h4>
<div class="info-box d-flex align-content-center">
<!-- <p class="avatar">
<img src="https://avatar.****.net/7/D/6/3_qq_26222859.jpg" alt="qq_26222859" class="avatar-pic">
<span class="namebox">
<span class="name">qq_26222859</span>
<span class="triangle"></span>
</span>
</p> -->
<p class="date-and-readNum">
<span class="date hover-show">06-14</span>
<span class="read-num hover-hide">
<svg class="icon ****c-yuedushu" aria-hidden="true">
<use xlink:href="#****c-m-passwords-visible"></use>
</svg>
872</span>
</p>
</div>
</a>
<p class="content">
<a href="https://blog.****.net/qq_26222859/article/details/73225242" target="_blank" title="Softmax 函数及其作用(含推导) - qq_26222859的博客">
<span class="desc oneline">Softmax函数的定义及作用
Softmax是一种形如下式的函数:
P(i)=exp(θTix)∑Kk=1exp(θTkx)
其中θi和x是列向量,θTix可能被换成函数关于x…
来自: qq_26222859的博客
<div class="recommend-loading-box">
<img src='https://****img.cn/release/phoenix/images/feedLoading.gif'>
</div>
<div class="recommend-end-box">
<p class="text-center">没有更多推荐了,<a href="https://blog.****.net/" class="c-blue c-blue-hover c-blue-focus">返回首页</a></p>
</div>
</div>
</main>
<aside>
<div id="asideProfile" class="aside-box">
<!-- <h3 class="aside-title">个人资料</h3> -->
<div class="profile-intro d-flex">
<div class="avatar-box d-flex justify-content-center flex-column">
<a href="https://blog.****.net/wishchin">
<img src="https://avatar.****.net/9/9/E/3_wishchin.jpg" class="avatar_pic">
</a>
</div>
<div class="user-info d-flex justify-content-center flex-column">
<p class="name ****-tracking-statistics tracking-click" data-mod="popu_379">
<a href="https://blog.****.net/wishchin" target="_blank" class="" id="uid">wishchin</a>
</p>
</div>
<div class="opt-box d-flex justify-content-center flex-column">
<span class="****-tracking-statistics tracking-click" data-mod="popu_379">
<a class="btn btn-sm btn-red-hollow attention" id="btnAttent">关注</a>
</span>
</div>
</div>
<div class="data-info d-flex item-tiling">
<dl class="text-center" title="344">
<dt><a href="https://blog.****.net/wishchin?t=1">原创</a></dt>
<dd><a href="https://blog.****.net/wishchin?t=1"><span class="count">344</span></a></dd>
</dl>
<dl class="text-center" id="fanBox" title="632">
<dt>粉丝</dt>
<dd><span class="count" id="fan">632</span></dd>
</dl>
<dl class="text-center" title="149">
<dt>喜欢</dt>
<dd><span class="count">149</span></dd>
</dl>
<dl class="text-center" title="276">
<dt>评论</dt>
<dd><span class="count">276</span></dd>
</dl>
</div>
<div class="grade-box clearfix">
<dl>
<dt>等级:</dt>
<dd>
<a href="https://blog.****.net/home/help.html#level" title="7级,点击查看等级说明" target="_blank">
<svg class="icon icon-level" aria-hidden="true">
<use xlink:href="#****c-bloglevel-7"></use>
</svg>
</a>
</dd>
</dl>
<dl>
<dt>访问:</dt>
<dd title="1504101">
150万+ </dd>
</dl>
<dl>
<dt>积分:</dt>
<dd title="18743">
1万+ </dd>
</dl>
<dl title="711">
<dt>排名:</dt>
<dd>711</dd>
</dl>
</div>
<div class="badge-box d-flex">
<span>勋章:</span>
<div class="icon-badge" title="持之以恒">
<div class="mouse-box">
<svg class="icon" aria-hidden="true">
<use xlink:href="#****c-m-lasting"></use>
</svg>
<div class="icon-arrow"></div>
</div>
<div class="grade-detail-box">
<div class="pos-box">
<div class="left-box d-flex justify-content-center align-items-center flex-column">
<svg class="icon" aria-hidden="true">
<use xlink:href="#****c-m-lasting"></use>
</svg>
<p>持之以恒</p>
</div>
<div class="right-box d-flex justify-content-center align-items-center">
授予每个自然月内发布4篇或4篇以上原创或翻译IT博文的用户。不积跬步无以至千里,不积小流无以成江海,程序人生的精彩需要坚持不懈地积累!
</div>
</div>
</div>
</div>
<script>
(function ($) {
setTimeout(function(){
$('div.icon-badge.show-moment').removeClass('show-moment');
}, 5000);
})(window.jQuery)
</script>
</div>
</div>
<div class="****-tracking-statistics mb8 box-shadow" data-pid="blog" data-mod="popu_4" style="height:250px;">
<div class="aside-content text-center" id="cpro_u2734133">
<div id="kp_box_76" data-pid="56" data-track-view='{"mod":"kp_popu_76","con":",,"}'><script type="text/javascript" src="//rabc1.iteye.com/source/openjs/api/mbxf4.js?b=wocoltly"></script></div><script>$(function(){****.track.viewCheck($("#kp_box_76"));});</script> </div>
最新文章
个人分类
- 心理学/职业 38篇
- 场景处理/RgbD累积 104篇
- C++编程 66篇
- MFC编程 26篇
- 目标追踪 9篇
- 人脸识别 14篇
- MLandPy 46篇
- Matlab编程 17篇
- BigDataMini 19篇
- PythonLG 34篇
- 图像检索 34篇
- C+/代码迁移 32篇
- BOOST/FlANN/Eigen/C+0X 25篇
- 艺术/图像评价 35篇
- QT./Linux 57篇
- AI/ES 65篇
- 开源标准 10篇
- 毕业论文 5篇
- 数学/工具 33篇
- 工程/设计师 29篇
- CUDA 23篇
- 图像特征 50篇
- 计算机视觉 44篇
- 语言(学) 7篇
- Django 3篇
- PS 4篇
- Linux开发 10篇
- STL/算法 44篇
- AI:A Modern Approach 4thEdtion 4篇
- IAAS 9篇
- Spark 6篇
- PaaS 9篇
- ANN/DNN/纤维丛 126篇
- 聚类分析 11篇
- 判别分析 30篇
- AR/VR_3D 41篇
- 人形机器人 57篇
- 三维重建/SLAM 79篇
- ML日报收集 1篇
- OpenCV 63篇
- 生成式模型 12篇
- ReinforceLearning 30篇
- ROS 25篇
- 时序/变长分析 35篇
- 资源整理 44篇
- 飞行机器人 3篇
- GazeTracker 4篇
- Humanoid 27篇
- TuringMachine 26篇
- AI/ML 42篇
- 推荐/Rank系统 22篇
- StyleAI 37篇
- 总体哲学AIPRIPCV 23篇
归档
- 2018年10月 7篇
- 2018年9月 6篇
- 2018年8月 2篇
- 2018年7月 17篇
- 2018年6月 11篇
- 2018年5月 5篇
- 2018年4月 8篇
- 2018年3月 23篇
- 2018年2月 5篇
- 2018年1月 8篇
- 2017年12月 13篇
- 2017年11月 18篇
- 2017年10月 7篇
- 2017年9月 9篇
- 2017年8月 9篇
- 2017年7月 15篇
- 2017年6月 11篇
- 2017年5月 8篇
- 2017年4月 4篇
- 2017年3月 18篇
- 2017年2月 4篇
- 2017年1月 1篇
- 2016年12月 2篇
- 2016年11月 3篇
- 2016年10月 3篇
- 2016年9月 2篇
- 2016年8月 8篇
- 2016年7月 11篇
- 2016年6月 13篇
- 2016年5月 40篇
- 2016年4月 4篇
- 2016年3月 4篇
- 2016年2月 3篇
- 2016年1月 3篇
- 2015年12月 21篇
- 2015年11月 5篇
- 2015年10月 12篇
- 2015年9月 13篇
- 2015年8月 16篇
- 2015年7月 14篇
- 2015年6月 8篇
- 2015年5月 4篇
- 2015年4月 24篇
- 2015年3月 8篇
- 2015年1月 10篇
- 2014年12月 23篇
- 2014年11月 3篇
- 2014年10月 7篇
- 2014年9月 1篇
- 2014年8月 16篇
- 2014年7月 21篇
- 2014年6月 11篇
- 2014年5月 3篇
- 2014年4月 5篇
- 2014年3月 10篇
- 2014年2月 21篇
- 2014年1月 11篇
- 2013年12月 17篇
- 2013年11月 38篇
- 2013年10月 28篇
- 2013年9月 28篇
- 2013年8月 12篇
- 2013年7月 24篇
-
点赞
取消点赞
0
-
评论
-
目录
- 收藏
- 手机看
- 上一篇
- 下一篇
-
更多
</a> <ul class="widescreen-more-box"> <li class="widescreen-more"> <a class="btn-comments low-height hover-box" href="https://blog.****.net/wishchin/article/details/75008329" title="AI:IPPR的数学表示-CNN结构/参数分析"> <svg class="icon hover-hide" aria-hidden="true"> <use xlink:href="#****c-chevronleft"></use> </svg> <span class="hover-show text text3">上一篇</span> </a> </li> <li class="widescreen-more"> <a class="btn-comments hover-box low-height" href="https://blog.****.net/wishchin/article/details/75330755" title="三维重建面试13X:一些算法试题-今日头条AI-Lab"> <svg class="icon hover-hide" aria-hidden="true"> <use xlink:href="#****c-chevronright"></use> </svg> <span class="hover-show text text3">下一篇</span> </a> </li> </ul> </li> </ul>
<link rel="stylesheet" href="https://****img.cn/release/blog_editor_html/release1.3.1/ckeditor/plugins/chart/chart.css" />
<script type="text/javascript" src="https://****img.cn/release/blog_editor_html/release1.3.1/ckeditor/plugins/chart/lib/chart.min.js"></script>
<script type="text/javascript" src="https://****img.cn/release/blog_editor_html/release1.3.1/ckeditor/plugins/chart/widget2chart.js"></script>
<link rel="stylesheet" href="https://****img.cn/release/blog_editor_html/release1.3.1/ckeditor/plugins/codesnippet/lib/highlight/styles/atelier-sulphurpool-light.css">
<script type="text/javascript" src="https://****img.cn/release/phoenix/production/pc_wap_common-9e177e0136.js" /></script>
<script type="text/javascript">
$(function(){
var allEscRegex = /&(lt|gt|amp|quot|nbsp|shy|#\d{1,5});/g,
namedEntities = {
lt: '<',
gt: '>',
amp: '&',
quot: '"',
nbsp: '\u00a0',
shy: '\u00ad'
}
var allEscDecode = function( match, code ) {
return namedEntities[ code ];
};
htmlDecodeAttr = function( text ) {
return text.replace( allEscRegex, allEscDecode );
}
hljs.initHighlightingOnLoad();
hljs.initCopyButtonOnLoad();
hljs.initLineNumbersOnLoad();
if($('pre .language-plain').length>0){
$('pre .language-plain').each(function(i,e){
var highlightRe = hljs.highlightAuto(htmlDecodeAttr(e.innerHTML))
e.innerHTML = highlightRe.value;
e.className = 'language-'+highlightRe.language;
});
}
})
</script>