kaggle理论学习
线性回归——lasso回归和岭回归(ridge regression)
线性回归很简单,用线性函数拟合数据,用 mean square error (mse) 计算损失(cost),然后用梯度下降法找到一组使 mse 最小的权重。
lasso 回归和岭回归(ridge regression)其实就是在标准线性回归的基础上分别加入 L1 和 L2 正则化(regularization)。
线性回归(linear regression)
线性回归(linear regression),就是用线性函数 去拟合一组数据。
Lasso回归和岭回归
Lasso回归和岭回归的同和异:
相同:
- 都可以用来解决标准线性回归的过拟合问题。
(线性回归也存在过拟合问题)
不同:
- lasso 可以用来做 feature selection,而 ridge 不行。或者说,lasso 更容易使得权重变为 0,而 ridge 更容易使得权重接近 0。
从贝叶斯角度看,lasso(L1 正则)等价于参数 w 的先验概率分布满足拉普拉斯分布,而 ridge(L2 正则)等价于参数 w 的先验概率分布满足高斯分布。