视频分割--Learning to Segment Instances in Videos with Spatial Propagation Network
Learning to Segment Instances in Videos with Spatial Propagation Network
CVPRW2017
https://github.com/JingchunCheng/Seg-with-SPN
本文针对视频中多目标运动物体分割问题,instance-level object segmentation 提出使用 CNN 网络分三个步骤来解决:前景分割、物体类别识别、分割精细化
3.1. Foreground Segmentation
这里采用类似 FCN 分割框架,采用 ResNet-101 模型,主要的改进:1)去掉全连接层,2)融合多尺度卷积层信息
3.2. Instance-level Recognition
有了前景分割的结果,我们分割出每个物体,further segment instance-level objects,采用的网络和损失函数类似前景分割的网络
4 Mask Refinement
这里我们做了两个步骤的Refinement
1)Spatial Propagation Network 这个网络主要用于学习 affinity entities,The coarse mask is refined under the guidance of the affinity, the learned pairwise relations, for any pairs of pixels.
2)Connected Region-aware Filter 这一步主要 considering temporal information in other frames,the consistency between two frames and helps rectify
some instance confusions
5 Experiments