1 创建一张表
mysql> create table day_video_traffics_topn_stat (
day varchar(8) not null,
cms_id bigint(10) not null,
traffics bigint(10) not null,
primary key (day,cms_id)
);
Query OK, 0 rows affected (0.06 sec)
mysql> show tables;
+---------------------------------+
| Tables_in_weblog |
+---------------------------------+
| day_video_access_topn_stat |
| day_video_city_access_topn_stat |
| day_video_traffics_topn_stat |
+---------------------------------+
3 rows in set (0.02 sec)
mysql> select * from day_video_traffics_topn_stat;
Empty set
2 源码
2.1 DayVideoTrafficsStat.scala
package com.weblog.cn
class DayVideoTrafficsStat(day:String,cmsId:Long,traffics:Long)
2.2 StatDAO.scala
package com.weblog.cn
import java.sql.{Connection, PreparedStatement}
import scala.collection.mutable.ListBuffer
/*
* 各个维度统计 DAO 操作
* */
object StatDAO {
/*
* 批量保存 DayVideoAccessStat 到数据库
* */
def insertDayVideoAccessTopN(list: ListBuffer[DayVideoAccessStat]) = {
var connection: Connection = null
var pstmt: PreparedStatement = null
try {
connection = MySQLUtils.getConnection()
connection.setAutoCommit(false) //设置手动提交
val sql = "insert into day_video_access_topn_stat(day,cms_id,times) values (?,?,?) "
pstmt = connection.prepareStatement(sql)
for(ele <- list){
pstmt.setString(1,ele.day)
pstmt.setLong(2,ele.cmsId)
pstmt.setLong(3,ele.times)
pstmt.addBatch()
}
pstmt.executeBatch() //执行批量处理
connection.commit() //手动提交
} catch {
case e: Exception => e.printStackTrace()
} finally {
MySQLUtils.release(connection, pstmt)
}
}
/*
* 批量保存 DayCityVideoAccessStat 到数据库
* */
def insertDayCityVideoAccessTopN(list: ListBuffer[DayCityVideoAccessStat]) = {
var connection: Connection = null
var pstmt: PreparedStatement = null
try {
connection = MySQLUtils.getConnection()
connection.setAutoCommit(false) //设置手动提交
val sql = "insert into day_video_city_access_topn_stat(day,cms_id,city,times,times_rank) values (?,?,?,?,?) "
pstmt = connection.prepareStatement(sql)
for(ele <- list){
pstmt.setString(1,ele.day)
pstmt.setLong(2,ele.cmsId)
pstmt.setString(3,ele.city)
pstmt.setLong(4,ele.times)
pstmt.setInt(5,ele.timesRank)
pstmt.addBatch()
}
pstmt.executeBatch() //执行批量处理
connection.commit() //手动提交
} catch {
case e: Exception => e.printStackTrace()
} finally {
MySQLUtils.release(connection, pstmt)
}
}
/*
* 批量保存 DayVideoTrafficsStat 到数据库
* */
def insertDayVideoTrafficsAccessTopN(list: ListBuffer[DayVideoTrafficsStat]) = {
var connection: Connection = null
var pstmt: PreparedStatement = null
try {
connection = MySQLUtils.getConnection()
connection.setAutoCommit(false) //设置手动提交
val sql = "insert into day_video_traffics_topn_stat(day,cms_id,traffics) values (?,?,?) "
pstmt = connection.prepareStatement(sql)
for(ele <- list){
pstmt.setString(1,ele.day)
pstmt.setLong(2,ele.cmsId)
pstmt.setLong(3,ele.traffics)
pstmt.addBatch()
}
pstmt.executeBatch() //执行批量处理
connection.commit() //手动提交
} catch {
case e: Exception => e.printStackTrace()
} finally {
MySQLUtils.release(connection, pstmt)
}
}
}
2.3 TopNStatJob.scala
package com.weblog.cn
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.sql.functions._
import scala.collection.mutable.ListBuffer
object TopNStatJob {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().appName("TopNStatJobApp")
.config("spark.sql.sources.partitionColumnTypeInference.enabled", "false")
.master("local[2]").getOrCreate()
val accessDF = spark.read.format("parquet").load("d://weblog_clean")
// accessDF.printSchema()
// accessDF.show(false)
//最受欢迎的 TopN 课程
//videoAccessTopNStat(spark, accessDF)
//按照地市进行统计TopN课程
//cityAccessTopNStat(spark, accessDF)
videoTrafficTopNStat(spark,accessDF)
spark.stop()
}
/*
* 按照流量统计TopN
* */
def videoTrafficTopNStat(spark: SparkSession, accessDF: DataFrame): Unit = {
import spark.implicits._
val trafficTopNDF = accessDF.filter($"day" === "20170511" && $"cmsType" === "video")
.groupBy("day","cmsId").agg(sum("traffic").as("traffics"))
.orderBy($"traffics".desc)//.show(false)
/*
* 将统计结果写入到 MySQL
* */
try {
trafficTopNDF.foreachPartition(partitionOfRecords => {
val list = new ListBuffer[DayVideoTrafficsStat]
partitionOfRecords.foreach(info => {
val day = info.getAs[String]("day")
val cmsId = info.getAs[Long]("cmsId")
val traffics = info.getAs[Long]("traffics")
list.append( DayVideoTrafficsStat(day, cmsId,traffics))
})
StatDAO.insertDayVideoTrafficsAccessTopN(list)
})
} catch {
case e: Exception => e.printStackTrace()
}
}
/*
*
*按照地市进行统计TopN课程
* */
def cityAccessTopNStat(spark: SparkSession, accessDF: DataFrame) = {
import spark.implicits._
val cityAccessTopNDF = accessDF.filter($"day" === "20170511" && $"cmsType" === "video")
.groupBy("day", "cmsId", "city")
.agg(count("cmsId").as("times"))
//cityAccessTopNDF.show(false)
/*
* Window 函数在 Spark SQL 中的使用
* */
val top3DF = cityAccessTopNDF.select(
cityAccessTopNDF("day"),
cityAccessTopNDF("city"),
cityAccessTopNDF("cmsId"),
cityAccessTopNDF("times"),
row_number().over(Window.partitionBy(cityAccessTopNDF("city"))
.orderBy(cityAccessTopNDF("city").desc)
).as("times_rank")
).filter("times_rank <= 3") //.show(false) //统计每个地市 Top3
/*
* 将统计结果写入到 MySQL
* */
try {
top3DF.foreachPartition(partitionOfRecords => {
val list = new ListBuffer[DayCityVideoAccessStat]
partitionOfRecords.foreach(info => {
val day = info.getAs[String]("day")
val cmsId = info.getAs[Long]("cmsId")
val city = info.getAs[String]("city")
val times = info.getAs[Long]("times")
val timesRank = info.getAs[Int]("times_rank")
list.append(DayCityVideoAccessStat(day, cmsId, city, times, timesRank))
})
StatDAO.insertDayCityVideoAccessTopN(list)
})
} catch {
case e: Exception => e.printStackTrace()
}
}
/*
* 最受欢迎的 TopN课程
* */
def videoAccessTopNStat(spark: SparkSession, accessDF: DataFrame) = {
//DataFrame 方式
/*import spark.implicits._
val videoAccessTopNDF = accessDF.filter($"day" === "20170511" && $"cmsType" === "video")
.groupBy("day", "cmsId").agg(count("cmsId").as("times"))
.orderBy($"times".desc)
videoAccessTopNDF.show(false)*/
//使用SQL 方式统计
accessDF.createOrReplaceTempView("access_logs")
val videoAccessTopNDF = spark.sql("select day,cmsId, count(1) as times from access_logs where day='20170511' and cmsType='video'" +
" group by day,cmsId order by times desc")
//videoAccessTopNDF.show(false)
/*
*
* 将统计结果写入到 MySQL中
* */
try {
videoAccessTopNDF.foreachPartition(partitionOfRecords => {
val list = new ListBuffer[DayVideoAccessStat]
partitionOfRecords.foreach(info => {
val day = info.getAs[String]("day")
val cmsId = info.getAs[Long]("cmsId")
val times = info.getAs[Long]("times")
list.append(DayVideoAccessStat(day, cmsId, times))
})
StatDAO.insertDayVideoAccessTopN(list)
})
} catch {
case e: Exception => e.printStackTrace()
}
}
}
2.4 运行结果
