对卷积的理解
作者:鱼腻
链接:https://www.zhihu.com/question/22298352/answer/91131073
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
链接:https://www.zhihu.com/question/22298352/answer/91131073
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
关于卷积的一个血腥的讲解
比如说你的老板命令你干活,你却到楼下打台球去了,后来被老板发现,他非常气愤,扇了你一巴掌(注意,这就是输入信号,脉冲),于是你的脸上会渐渐地(贱贱地)鼓起来一个包,你的脸就是一个系统,而鼓起来的包就是你的脸对巴掌的响应,好,这样就和信号系统建立起来意义对应的联系。下面还需要一些假设来保证论证的严谨:假定你的脸是线性时不变系统,也就是说,无论什么时候老板打你一巴掌,打在你脸的同一位置(这似乎要求你的脸足够光滑,如果你说你长了很多青春痘,甚至整个脸皮处处连续处处不可导,那难度太大了,我就无话可说了哈哈),你的脸上总是会在相同的时间间隔内鼓起来一个相同高度的包来,并且假定以鼓起来的包的大小作为系统输出。好了,那么,下面可以进入核心内容——卷积了!
有了这个基础,再去理解卷积的公式就没那么intimidating了。放张图,心血来潮随手画的,但愿能顶个卵用。
<img src="https://pic3.zhimg.com/50/v2-724258cbe70038cc271094344c9cc3c2_hd.png" data-rawwidth="983" data-rawheight="516" class="origin_image zh-lightbox-thumb" width="983" data-original="https://pic3.zhimg.com/v2-724258cbe70038cc271094344c9cc3c2_r.png">
另外,对于实际系统(因果系统),由于未来的打脸( )不会造成现在的脸肿,所以积分上限设为
就行了;此外我们还一般假设
之前没人打脸并且脸也不肿,所以积分下限设为
就行了。因此
作者:Kaixiang Wang
链接:https://www.zhihu.com/question/22298352/answer/193852554
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。