[原]Android应用程序进程启动过程的源代码分析

        Android应用程序框架层创建的应用程序进程具有两个特点,一是进程的入口函数是ActivityThread.main,二是进程天然支持Binder进程间通信机制;这两个特点都是在进程的初始化过程中实现的,本文将详细分析Android应用程序进程创建过程中是如何实现这两个特点的。

        Android应用程序框架层创建的应用程序进程的入口函数是ActivityThread.main比较好理解,即进程创建完成之后,Android应用程序框架层就会在这个进程中将ActivityThread类加载进来,然后执行它的main函数,这个main函数就是进程执行消息循环的地方了。Android应用程序框架层创建的应用程序进程天然支持Binder进程间通信机制这个特点应该怎么样理解呢?前面我们在学习Android系统的Binder进程间通信机制时说到,它具有四个组件,分别是驱动程序、守护进程、Client以及Server,其中Server组件在初始化时必须进入一个循环中不断地与Binder驱动程序进行到交互,以便获得Client组件发送的请求,具体可参考Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析一文,但是,当我们在Android应用程序中实现Server组件的时候,我们并没有让进程进入一个循环中去等待Client组件的请求,然而,当Client组件得到这个Server组件的远程接口时,却可以顺利地和Server组件进行进程间通信,这就是因为Android应用程序进程在创建的时候就已经启动了一个线程池来支持Server组件和Binder驱动程序之间的交互了,这样,极大地方便了在Android应用程序中创建Server组件。

        在Android应用程序框架层中,是由ActivityManagerService组件负责为Android应用程序创建新的进程的,它本来也是运行在一个独立的进程之中,不过这个进程是在系统启动的过程中创建的。ActivityManagerService组件一般会在什么情况下会为应用程序创建一个新的进程呢?当系统决定要在一个新的进程中启动一个Activity或者Service时,它就会创建一个新的进程了,然后在这个新的进程中启动这个Activity或者Service,具体可以参考Android系统在新进程中启动自定义服务过程(startService)的原理分析Android应用程序启动过程源代码分析Android应用程序在新的进程中启动新的Activity的方法和过程分析这三篇文章。

        ActivityManagerService启动新的进程是从其成员函数startProcessLocked开始的,在深入分析这个过程之前,我们先来看一下进程创建过程的序列图,然后再详细分析每一个步骤。

[原]Android应用程序进程启动过程的源代码分析

       点击查看大图

        Step 1. ActivityManagerService.startProcessLocked

        这个函数定义在frameworks/base/services/java/com/android/server/am/ActivityManagerService.java文件中:

public final class ActivityManagerService extends ActivityManagerNative  
        implements Watchdog.Monitor, BatteryStatsImpl.BatteryCallback {  
  
    ......  
  
    private final void startProcessLocked(ProcessRecord app,  
                String hostingType, String hostingNameStr) {  
  
        ......  
  
        try {  
            int uid = app.info.uid;  
            int[] gids = null;  
            try {  
                gids = mContext.getPackageManager().getPackageGids(  
                    app.info.packageName);  
            } catch (PackageManager.NameNotFoundException e) {  
                ......  
            }  
              
            ......  
  
            int debugFlags = 0;  
              
            ......  
              
            int pid = Process.start("android.app.ActivityThread",  
                mSimpleProcessManagement ? app.processName : null, uid, uid,  
                gids, debugFlags, null);  
              
            ......  
  
        } catch (RuntimeException e) {  
              
            ......  
  
        }  
    }  
  
    ......  
  
}  
        它调用了Process.start函数开始为应用程序创建新的进程,注意,它传入一个第一个参数为"android.app.ActivityThread",这就是进程初始化时要加载的Java类了,把这个类加载到进程之后,就会把它里面的静态成员函数main作为进程的入口点,后面我们会看到。

 

        Step 2. Process.start 

        这个函数定义在frameworks/base/core/java/android/os/Process.java文件中:

public class Process {
	......

	public static final int start(final String processClass,
		final String niceName,
		int uid, int gid, int[] gids,
		int debugFlags,
		String[] zygoteArgs)
	{
		if (supportsProcesses()) {
			try {
				return startViaZygote(processClass, niceName, uid, gid, gids,
					debugFlags, zygoteArgs);
			} catch (ZygoteStartFailedEx ex) {
				......
			}
		} else {
			......

			return 0;
		}
	}

	......
}
       这里的supportsProcesses函数返回值为true,它是一个Native函数,实现在frameworks/base/core/jni/android_util_Process.cpp文件中:

 

jboolean android_os_Process_supportsProcesses(JNIEnv* env, jobject clazz)
{
    return ProcessState::self()->supportsProcesses();
}

 

       ProcessState::supportsProcesses函数定义在frameworks/base/libs/binder/ProcessState.cpp文件中:

bool ProcessState::supportsProcesses() const
{
    return mDriverFD >= 0;
}
       这里的mDriverFD是设备文件/dev/binder的打开描述符,如果成功打开了这个设备文件,那么它的值就会大于等于0,因此,它的返回值为true。

 

       回到Process.start函数中,它调用startViaZygote函数进一步操作。

       Step 3. Process.startViaZygote

       这个函数定义在frameworks/base/core/java/android/os/Process.java文件中:

public class Process {
	......

	private static int startViaZygote(final String processClass,
			final String niceName,
			final int uid, final int gid,
			final int[] gids,
			int debugFlags,
			String[] extraArgs)
			throws ZygoteStartFailedEx {
		int pid;

		synchronized(Process.class) {
			ArrayList<String> argsForZygote = new ArrayList<String>();

			// --runtime-init, --setuid=, --setgid=,
			// and --setgroups= must go first
			argsForZygote.add("--runtime-init");
			argsForZygote.add("--setuid=" + uid);
			argsForZygote.add("--setgid=" + gid);
			if ((debugFlags & Zygote.DEBUG_ENABLE_SAFEMODE) != 0) {
				argsForZygote.add("--enable-safemode");
			}
			if ((debugFlags & Zygote.DEBUG_ENABLE_DEBUGGER) != 0) {
				argsForZygote.add("--enable-debugger");
			}
			if ((debugFlags & Zygote.DEBUG_ENABLE_CHECKJNI) != 0) {
				argsForZygote.add("--enable-checkjni");
			}
			if ((debugFlags & Zygote.DEBUG_ENABLE_ASSERT) != 0) {
				argsForZygote.add("--enable-assert");
			}

			//TODO optionally enable debuger
			//argsForZygote.add("--enable-debugger");

			// --setgroups is a comma-separated list
			if (gids != null && gids.length > 0) {
				StringBuilder sb = new StringBuilder();
				sb.append("--setgroups=");

				int sz = gids.length;
				for (int i = 0; i < sz; i++) {
					if (i != 0) {
						sb.append(',');
					}
					sb.append(gids[i]);
				}

				argsForZygote.add(sb.toString());
			}

			if (niceName != null) {
				argsForZygote.add("--nice-name=" + niceName);
			}

			argsForZygote.add(processClass);

			if (extraArgs != null) {
				for (String arg : extraArgs) {
					argsForZygote.add(arg);
				}
			}

			pid = zygoteSendArgsAndGetPid(argsForZygote);
		}
	}

	......
}
        这个函数将创建进程的参数放到argsForZygote列表中去,如参数"--runtime-init"表示要为新创建的进程初始化运行时库,然后调用zygoteSendAndGetPid函数进一步操作。

 

        Step 4. Process.zygoteSendAndGetPid

        这个函数定义在frameworks/base/core/java/android/os/Process.java文件中:

public class Process {
	......

	private static int zygoteSendArgsAndGetPid(ArrayList<String> args)
			throws ZygoteStartFailedEx {
		int pid;

		openZygoteSocketIfNeeded();

		try {
			/**
			* See com.android.internal.os.ZygoteInit.readArgumentList()
			* Presently the wire format to the zygote process is:
			* a) a count of arguments (argc, in essence)
			* b) a number of newline-separated argument strings equal to count
			*
			* After the zygote process reads these it will write the pid of
			* the child or -1 on failure.
			*/

			sZygoteWriter.write(Integer.toString(args.size()));
			sZygoteWriter.newLine();

			int sz = args.size();
			for (int i = 0; i < sz; i++) {
				String arg = args.get(i);
				if (arg.indexOf('\n') >= 0) {
					throw new ZygoteStartFailedEx(
						"embedded newlines not allowed");
				}
				sZygoteWriter.write(arg);
				sZygoteWriter.newLine();
			}

			sZygoteWriter.flush();

			// Should there be a timeout on this?
			pid = sZygoteInputStream.readInt();

			if (pid < 0) {
				throw new ZygoteStartFailedEx("fork() failed");
			}
		} catch (IOException ex) {
			......
		}

		return pid;
	}

	......
}
         这里的sZygoteWriter是一个Socket写入流,是由openZygoteSocketIfNeeded函数打开的:

 

public class Process {
	......

	/**
	* Tries to open socket to Zygote process if not already open. If
	* already open, does nothing.  May block and retry.
	*/
	private static void openZygoteSocketIfNeeded()
			throws ZygoteStartFailedEx {

		int retryCount;

		if (sPreviousZygoteOpenFailed) {
			/*
			* If we've failed before, expect that we'll fail again and
			* don't pause for retries.
			*/
			retryCount = 0;
		} else {
			retryCount = 10;
		}
	
		/*
		* See bug #811181: Sometimes runtime can make it up before zygote.
		* Really, we'd like to do something better to avoid this condition,
		* but for now just wait a bit...
		*/
		for (int retry = 0
			; (sZygoteSocket == null) && (retry < (retryCount + 1))
			; retry++ ) {

				if (retry > 0) {
					try {
						Log.i("Zygote", "Zygote not up yet, sleeping...");
						Thread.sleep(ZYGOTE_RETRY_MILLIS);
					} catch (InterruptedException ex) {
						// should never happen
					}
				}

				try {
					sZygoteSocket = new LocalSocket();
					sZygoteSocket.connect(new LocalSocketAddress(ZYGOTE_SOCKET,
						LocalSocketAddress.Namespace.RESERVED));

					sZygoteInputStream
						= new DataInputStream(sZygoteSocket.getInputStream());

					sZygoteWriter =
						new BufferedWriter(
						new OutputStreamWriter(
						sZygoteSocket.getOutputStream()),
						256);

					Log.i("Zygote", "Process: zygote socket opened");

					sPreviousZygoteOpenFailed = false;
					break;
				} catch (IOException ex) {
					......
				}
		}

		......
	}

	......
}
        这个Socket由frameworks/base/core/java/com/android/internal/os/ZygoteInit.java文件中的ZygoteInit类在runSelectLoopMode函数侦听的。
        Step 5. ZygoteInit.runSelectLoopMode
        这个函数定义在frameworks/base/core/java/com/android/internal/os/ZygoteInit.java文件中:

 

public class ZygoteInit {
	......

	/**
	* Runs the zygote process's select loop. Accepts new connections as
	* they happen, and reads commands from connections one spawn-request's
	* worth at a time.
	*
	* @throws MethodAndArgsCaller in a child process when a main() should
	* be executed.
	*/
	private static void runSelectLoopMode() throws MethodAndArgsCaller {
		ArrayList<FileDescriptor> fds = new ArrayList();
		ArrayList<ZygoteConnection> peers = new ArrayList();
		FileDescriptor[] fdArray = new FileDescriptor[4];

		fds.add(sServerSocket.getFileDescriptor());
		peers.add(null);

		int loopCount = GC_LOOP_COUNT;
		while (true) {
			int index;
			/*
			* Call gc() before we block in select().
			* It's work that has to be done anyway, and it's better
			* to avoid making every child do it.  It will also
			* madvise() any free memory as a side-effect.
			*
			* Don't call it every time, because walking the entire
			* heap is a lot of overhead to free a few hundred bytes.
			*/
			if (loopCount <= 0) {
				gc();
				loopCount = GC_LOOP_COUNT;
			} else {
				loopCount--;
			}


			try {
				fdArray = fds.toArray(fdArray);
				index = selectReadable(fdArray);
			} catch (IOException ex) {
				throw new RuntimeException("Error in select()", ex);
			}

			if (index < 0) {
				throw new RuntimeException("Error in select()");
			} else if (index == 0) {
				ZygoteConnection newPeer = acceptCommandPeer();
				peers.add(newPeer);
				fds.add(newPeer.getFileDesciptor());
			} else {
				boolean done;
				done = peers.get(index).runOnce();

				if (done) {
					peers.remove(index);
					fds.remove(index);
				}
			}
		}
	}

	......
}
        当Step 4将数据通过Socket接口发送出去后,就会下面这个语句:

 

done = peers.get(index).runOnce();
        这里从peers.get(index)得到的是一个ZygoteConnection对象,表示一个Socket连接,因此,接下来就是调用ZygoteConnection.runOnce函数进一步处理了。

 

        Step 6. ZygoteConnection.runOnce

        这个函数定义在frameworks/base/core/java/com/android/internal/os/ZygoteConnection.java文件中:

class ZygoteConnection {
	......

	boolean runOnce() throws ZygoteInit.MethodAndArgsCaller {
		String args[];
		Arguments parsedArgs = null;
		FileDescriptor[] descriptors;

		try {
			args = readArgumentList();
			descriptors = mSocket.getAncillaryFileDescriptors();
		} catch (IOException ex) {
			......
			return true;
		}

		......

		/** the stderr of the most recent request, if avail */
		PrintStream newStderr = null;

		if (descriptors != null && descriptors.length >= 3) {
			newStderr = new PrintStream(
				new FileOutputStream(descriptors[2]));
		}

		int pid;
		
		try {
			parsedArgs = new Arguments(args);

			applyUidSecurityPolicy(parsedArgs, peer);
			applyDebuggerSecurityPolicy(parsedArgs);
			applyRlimitSecurityPolicy(parsedArgs, peer);
			applyCapabilitiesSecurityPolicy(parsedArgs, peer);

			int[][] rlimits = null;

			if (parsedArgs.rlimits != null) {
				rlimits = parsedArgs.rlimits.toArray(intArray2d);
			}

			pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid,
				parsedArgs.gids, parsedArgs.debugFlags, rlimits);
		} catch (IllegalArgumentException ex) {
			......
		} catch (ZygoteSecurityException ex) {
			......
		}

		if (pid == 0) {
			// in child
			handleChildProc(parsedArgs, descriptors, newStderr);
			// should never happen
			return true;
		} else { /* pid != 0 */
			// in parent...pid of < 0 means failure
			return handleParentProc(pid, descriptors, parsedArgs);
		}
	}

	......
}
         真正创建进程的地方就是在这里了:

 

pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid,
	parsedArgs.gids, parsedArgs.debugFlags, rlimits);
        有Linux开发经验的读者很容易看懂这个函数调用,这个函数会创建一个进程,而且有两个返回值,一个是在当前进程中返回的,一个是在新创建的进程中返回,即在当前进程的子进程中返回,在当前进程中的返回值就是新创建的子进程的pid值,而在子进程中的返回值是0。因为我们只关心创建的新进程的情况,因此,我们沿着子进程的执行路径继续看下去:

 

    if (pid == 0) {
	// in child
	handleChildProc(parsedArgs, descriptors, newStderr);
	// should never happen
	return true;
    } else { /* pid != 0 */
	......
    }
        这里就是调用handleChildProc函数了。

 

        Step 7. ZygoteConnection.handleChildProc
        这个函数定义在frameworks/base/core/java/com/android/internal/os/ZygoteConnection.java文件中:

class ZygoteConnection {
	......

	private void handleChildProc(Arguments parsedArgs,
			FileDescriptor[] descriptors, PrintStream newStderr)
			throws ZygoteInit.MethodAndArgsCaller {
		......

		if (parsedArgs.runtimeInit) {
			RuntimeInit.zygoteInit(parsedArgs.remainingArgs);
		} else {
			......
		}
	}

	......
}
        由于在前面的Step 3中,指定了"--runtime-init"参数,表示要为新创建的进程初始化运行时库,因此,这里的parseArgs.runtimeInit值为true,于是就继续执行RuntimeInit.zygoteInit进一步处理了。

 

        Step 8. RuntimeInit.zygoteInit

        这个函数定义在frameworks/base/core/java/com/android/internal/os/RuntimeInit.java文件中:

public class RuntimeInit {
	......

	public static final void zygoteInit(String[] argv)
			throws ZygoteInit.MethodAndArgsCaller {
		// TODO: Doing this here works, but it seems kind of arbitrary. Find
		// a better place. The goal is to set it up for applications, but not
		// tools like am.
		System.setOut(new AndroidPrintStream(Log.INFO, "System.out"));
		System.setErr(new AndroidPrintStream(Log.WARN, "System.err"));

		commonInit();
		zygoteInitNative();

		int curArg = 0;
		for ( /* curArg */ ; curArg < argv.length; curArg++) {
			String arg = argv[curArg];

			if (arg.equals("--")) {
				curArg++;
				break;
			} else if (!arg.startsWith("--")) {
				break;
			} else if (arg.startsWith("--nice-name=")) {
				String niceName = arg.substring(arg.indexOf('=') + 1);
				Process.setArgV0(niceName);
			}
		}

		if (curArg == argv.length) {
			Slog.e(TAG, "Missing classname argument to RuntimeInit!");
			// let the process exit
			return;
		}

		// Remaining arguments are passed to the start class's static main

		String startClass = argv[curArg++];
		String[] startArgs = new String[argv.length - curArg];

		System.arraycopy(argv, curArg, startArgs, 0, startArgs.length);
		invokeStaticMain(startClass, startArgs);
	}

	......
}
        这里有两个关键的函数调用,一个是zygoteInitNative函数调用,一个是invokeStaticMain函数调用,前者就是执行Binder驱动程序初始化的相关工作了,正是由于执行了这个工作,才使得进程中的Binder对象能够顺利地进行Binder进程间通信,而后一个函数调用,就是执行进程的入口函数,这里就是执行startClass类的main函数了,而这个startClass即是我们在Step 1中传进来的"android.app.ActivityThread"值,表示要执行android.app.ActivityThread类的main函数。

 

        我们先来看一下zygoteInitNative函数的调用过程,然后再回到RuntimeInit.zygoteInit函数中来,看看它是如何调用android.app.ActivityThread类的main函数的。

        step 9. RuntimeInit.zygoteInitNative

        这个函数定义在frameworks/base/core/java/com/android/internal/os/RuntimeInit.java文件中:

public class RuntimeInit {
	......

	public static final native void zygoteInitNative();

	......
}
        这里可以看出,函数zygoteInitNative是一个Native函数,实现在frameworks/base/core/jni/AndroidRuntime.cpp文件中:

 

static void com_android_internal_os_RuntimeInit_zygoteInit(JNIEnv* env, jobject clazz)
{
    gCurRuntime->onZygoteInit();
}

 

        这里它调用了全局变量gCurRuntime的onZygoteInit函数,这个全局变量的定义在frameworks/base/core/jni/AndroidRuntime.cpp文件开头的地方:

static AndroidRuntime* gCurRuntime = NULL;
        这里可以看出,它的类型为AndroidRuntime,它是在AndroidRuntime类的构造函数中初始化的,AndroidRuntime类的构造函数也是定义在frameworks/base/core/jni/AndroidRuntime.cpp文件中:

 

AndroidRuntime::AndroidRuntime()
{
    ......

    assert(gCurRuntime == NULL);        // one per process
    gCurRuntime = this;
}
        那么这个AndroidRuntime类的构造函数又是什么时候被调用的呢?AndroidRuntime类的声明在frameworks/base/include/android_runtime/AndroidRuntime.h文件中,如果我们打开这个文件会看到,它是一个虚拟类,也就是我们不能直接创建一个AndroidRuntime对象,只能用一个AndroidRuntime类的指针来指向它的某一个子类,这个子类就是AppRuntime了,它定义在frameworks/base/cmds/app_process/app_main.cpp文件中:

 

int main(int argc, const char* const argv[])
{
	......

	AppRuntime runtime;
	
	......
}
        而AppRuntime类继续了AndroidRuntime类,它也是定义在frameworks/base/cmds/app_process/app_main.cpp文件中:
class AppRuntime : public AndroidRuntime
{
	......

};
        因此,在前面的com_android_internal_os_RuntimeInit_zygoteInit函数,实际是执行了AppRuntime类的onZygoteInit函数。

 

        Step 10. AppRuntime.onZygoteInit
        这个函数定义在frameworks/base/cmds/app_process/app_main.cpp文件中:

class AppRuntime : public AndroidRuntime
{
	......

	virtual void onZygoteInit()
	{
		sp<ProcessState> proc = ProcessState::self();
		if (proc->supportsProcesses()) {
			LOGV("App process: starting thread pool.\n");
			proc->startThreadPool();
		}
	}

	......
};
        这里它就是调用ProcessState::startThreadPool启动线程池了,这个线程池中的线程就是用来和Binder驱动程序进行交互的了。
        Step 11. ProcessState.startThreadPool
        这个函数定义在frameworks/base/libs/binder/ProcessState.cpp文件中:

 

void ProcessState::startThreadPool()
{
	AutoMutex _l(mLock);
	if (!mThreadPoolStarted) {
		mThreadPoolStarted = true;
		spawnPooledThread(true);
	}
}
        ProcessState类是Binder进程间通信机制的一个基础组件,它的作用可以参考浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析Android系统进程间通信(IPC)机制Binder中的Client获得Server远程接口过程源代码分析这三篇文章。这里它调用spawnPooledThread函数进一步处理。

 

        Step 12. ProcessState.spawnPooledThread

        这个函数定义在frameworks/base/libs/binder/ProcessState.cpp文件中:

void ProcessState::spawnPooledThread(bool isMain)
{
    if (mThreadPoolStarted) {
        int32_t s = android_atomic_add(1, &mThreadPoolSeq);
        char buf[32];
        sprintf(buf, "Binder Thread #%d", s);
        LOGV("Spawning new pooled thread, name=%s\n", buf);
        sp<Thread> t = new PoolThread(isMain);
        t->run(buf);
    }
}
        这里它会创建一个PoolThread线程类,然后执行它的run函数,最终就会执行PoolThread类的threadLoop函数了。

 

        Step 13. PoolThread.threadLoop

        这个函数定义在frameworks/base/libs/binder/ProcessState.cpp文件中:

class PoolThread : public Thread
{
public:
    PoolThread(bool isMain)
        : mIsMain(isMain)
    {
    }

protected:
    virtual bool threadLoop()
    {
        IPCThreadState::self()->joinThreadPool(mIsMain);
        return false;
    }

    const bool mIsMain;
};
        这里它执行了IPCThreadState::joinThreadPool函数进一步处理。IPCThreadState也是Binder进程间通信机制的一个基础组件,它的作用可以参考浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析Android系统进程间通信(IPC)机制Binder中的Client获得Server远程接口过程源代码分析这三篇文章。

 

        Step 14. IPCThreadState.joinThreadPool

        这个函数定义在frameworks/base/libs/binder/IPCThreadState.cpp文件中:

void IPCThreadState::joinThreadPool(bool isMain)
{
	......

	mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER);

	......

	status_t result;
	do {
		int32_t cmd;

		......

		// now get the next command to be processed, waiting if necessary
		result = talkWithDriver();
		if (result >= NO_ERROR) {
			size_t IN = mIn.dataAvail();
			if (IN < sizeof(int32_t)) continue;
			cmd = mIn.readInt32();
			......

			result = executeCommand(cmd);
		}

		......
	} while (result != -ECONNREFUSED && result != -EBADF);

	......
	
	mOut.writeInt32(BC_EXIT_LOOPER);
	talkWithDriver(false);
}
        这个函数首先告诉Binder驱动程序,这条线程要进入循环了:

 

mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER);
        然后在中间的while循环中通过talkWithDriver不断与Binder驱动程序进行交互,以便获得Client端的进程间调用:

 

result = talkWithDriver();
        获得了Client端的进程间调用后,就调用excuteCommand函数来处理这个请求:

 

result = executeCommand(cmd);
        最后,线程退出时,也会告诉Binder驱动程序,它退出了,这样Binder驱动程序就不会再在Client端的进程间调用分发给它了:

 

mOut.writeInt32(BC_EXIT_LOOPER);
talkWithDriver(false);
        我们再来看看talkWithDriver函数的实现。

 

        Step 15. talkWithDriver

        这个函数定义在frameworks/base/libs/binder/IPCThreadState.cpp文件中:

status_t IPCThreadState::talkWithDriver(bool doReceive)
{
	......

	binder_write_read bwr;

	// Is the read buffer empty?
	const bool needRead = mIn.dataPosition() >= mIn.dataSize();

	// We don't want to write anything if we are still reading
	// from data left in the input buffer and the caller
	// has requested to read the next data.
	const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0;

	bwr.write_size = outAvail;
	bwr.write_buffer = (long unsigned int)mOut.data();

	// This is what we'll read.
	if (doReceive && needRead) {
		bwr.read_size = mIn.dataCapacity();
		bwr.read_buffer = (long unsigned int)mIn.data();
	} else {
		bwr.read_size = 0;
	}

	......

	// Return immediately if there is nothing to do.
	if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR;

	bwr.write_consumed = 0;
	bwr.read_consumed = 0;
	status_t err;
	do {
		......
#if defined(HAVE_ANDROID_OS)
		if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0)
			err = NO_ERROR;
		else
			err = -errno;
#else
		err = INVALID_OPERATION;
#endif
		......
		}
	} while (err == -EINTR);

	....

	if (err >= NO_ERROR) {
		if (bwr..write_consumed > 0) {
			if (bwr.write_consumed < (ssize_t)mOut.dataSize())
				mOut.remove(0, bwr.write_consumed);
			else
				mOut.setDataSize(0);
		}
		if (bwr.read_consumed > 0) {
			mIn.setDataSize(bwr.read_consumed);
			mIn.setDataPosition(0);
		}
		......
		return NO_ERROR;
	}

	return err;
}
        这个函数的具体作用可以参考Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析一文,它只要就是通过ioctl文件操作函数来和Binder驱动程序交互的了:

 

ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)
        有了这个线程池之后,我们在开发Android应用程序的时候,当我们要和其它进程中进行通信时,只要定义自己的Binder对象,然后把这个Binder对象的远程接口通过其它途径传给其它进程后,其它进程就可以通过这个Binder对象的远程接口来调用我们的应用程序进程的函数了,它不像我们在C++层实现Binder进程间通信机制的Server时,必须要手动调用IPCThreadState.joinThreadPool函数来进入一个无限循环中与Binder驱动程序交互以便获得Client端的请求,这样就实现了我们在文章开头处说的Android应用程序进程天然地支持Binder进程间通信机制。

 

        细心的读者可能会发现,从Step 1到Step 9,都是在Android应用程序框架层运行的,而从Step 10到Step 15,都是在Android系统运行时库层运行的,这两个层次中的Binder进程间通信机制的接口一个是用Java来实现的,而别一个是用C++来实现的,这两者是如何协作的呢?这就是通过JNI层来实现的了,具体可以参考Android系统进程间通信Binder机制在应用程序框架层的Java接口源代码分析一文。

        回到Step 8中的RuntimeInit.zygoteInit函数中,在初始化完成Binder进程间通信机制的基础设施后,它接着就要进入进程的入口函数了。

        Step 16. RuntimeInit.invokeStaticMain

        这个函数定义在frameworks/base/core/java/com/android/internal/os/RuntimeInit.java文件中:

public class ZygoteInit {
	......

	static void invokeStaticMain(ClassLoader loader,
			String className, String[] argv)
			throws ZygoteInit.MethodAndArgsCaller {
		Class<?> cl;

		try {
			cl = loader.loadClass(className);
		} catch (ClassNotFoundException ex) {
			......
		}

		Method m;
		try {
			m = cl.getMethod("main", new Class[] { String[].class });
		} catch (NoSuchMethodException ex) {
			......
		} catch (SecurityException ex) {
			......
		}

		int modifiers = m.getModifiers();
		......

		/*
		* This throw gets caught in ZygoteInit.main(), which responds
		* by invoking the exception's run() method. This arrangement
		* clears up all the stack frames that were required in setting
		* up the process.
		*/
		throw new ZygoteInit.MethodAndArgsCaller(m, argv);
	}

	......
}
        前面我们说过,这里传进来的参数className字符串值为"android.app.ActivityThread",这里就通ClassLoader.loadClass函数将它加载到进程中:

 

cl = loader.loadClass(className);
        然后获得它的静态成员函数main:

 

m = cl.getMethod("main", new Class[] { String[].class });
        函数最后并没有直接调用这个静态成员函数main,而是通过抛出一个异常ZygoteInit.MethodAndArgsCaller,然后让ZygoteInit.main函数在捕获这个异常的时候再调用android.app.ActivityThread类的main函数。为什么要这样做呢?注释里面已经讲得很清楚了,它是为了清理堆栈的,这样就会让android.app.ActivityThread类的main函数觉得自己是进程的入口函数,而事实上,在执行android.app.ActivityThread类的main函数之前,已经做了大量的工作了。

 

        我们看看ZygoteInit.main函数在捕获到这个异常的时候做了什么事:

public class ZygoteInit {
	......

	public static void main(String argv[]) {
		try {
			......
		} catch (MethodAndArgsCaller caller) {
			caller.run();
		} catch (RuntimeException ex) {
			......
		}
	}

	......
}
        它执行MethodAndArgsCaller的run函数:

 

public class ZygoteInit {
	......

	public static class MethodAndArgsCaller extends Exception
			implements Runnable {
		/** method to call */
		private final Method mMethod;

		/** argument array */
		private final String[] mArgs;

		public MethodAndArgsCaller(Method method, String[] args) {
			mMethod = method;
			mArgs = args;
		}

		public void run() {
			try {
				mMethod.invoke(null, new Object[] { mArgs });
			} catch (IllegalAccessException ex) {
				......
			} catch (InvocationTargetException ex) {
				......
			}
		}
	}

	......
}
        这里的成员变量mMethod和mArgs都是在前面构造异常对象时传进来的,这里的mMethod就对应android.app.ActivityThread类的main函数了,于是最后就通过下面语句执行这个函数:

 

mMethod.invoke(null, new Object[] { mArgs });
        这样,android.app.ActivityThread类的main函数就被执行了。

 

        Step 17. ActivityThread.main

        这个函数定义在frameworks/base/core/java/android/app/ActivityThread.java文件中:

public final class ActivityThread {
	......

	public static final void main(String[] args) {
		SamplingProfilerIntegration.start();

		Process.setArgV0("<pre-initialized>");

		Looper.prepareMainLooper();
		if (sMainThreadHandler == null) {
			sMainThreadHandler = new Handler();
		}

		ActivityThread thread = new ActivityThread();
		thread.attach(false);

		if (false) {
			Looper.myLooper().setMessageLogging(new
				LogPrinter(Log.DEBUG, "ActivityThread"));
		}
		Looper.loop();

		if (Process.supportsProcesses()) {
			throw new RuntimeException("Main thread loop unexpectedly exited");
		}

		thread.detach();
		String name = (thread.mInitialApplication != null)
			? thread.mInitialApplication.getPackageName()
			: "<unknown>";
		Slog.i(TAG, "Main thread of " + name + " is now exiting");
	}

	......
}
        从这里我们可以看出,这个函数首先会在进程中创建一个ActivityThread对象:

 

ActivityThread thread = new ActivityThread();
        然后进入消息循环中:

 

Looper.loop();
        这样,我们以后就可以在这个进程中启动Activity或者Service了。

 

        至此,Android应用程序进程启动过程的源代码就分析完成了,它除了指定新的进程的入口函数是ActivityThread的main函数之外,还为进程内的Binder对象提供了Binder进程间通信机制的基础设施,由此可见,Binder进程间通信机制在Android系统中是何等的重要,而且是无处不在,想进一步学习Android系统的Binder进程间通信机制,请参考Android进程间通信(IPC)机制Binder简要介绍和学习计划一文。

作者:Luoshengyang 发表于2011-9-9 1:01:32 原文链接
阅读:8086 评论:15 查看评论