Pytorch入门实战-----CNN识别手写数据集
CNN网络对图像的提取特征确实厉害了,只跑一个epoch识别率就达到了98。
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as dsets
from torch.autograd import Variable
batch_size = 100
learning_rate = 0.01
num_epochs = 1
train_datasets = dsets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=False)
test_datasets = dsets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor(),
download=False)
train_loader = torch.utils.data.DataLoader(dataset=train_datasets,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_datasets,
batch_size=batch_size,
shuffle=False)
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=5, padding=2),# 输入图像大小(1*28*28)
nn.BatchNorm2d(16),#(16*28*28)
nn.ReLU(),
nn.MaxPool2d(2))#(16*14*14)
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(2))
self.fc = nn.Linear(7*7*32, 10)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = x.view(x.size(0), -1)
out = self.fc(x)
return out
cnn = CNN()
if torch.cuda.is_available():
cnn.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(cnn.parameters(),lr=learning_rate)
for epoch in range(num_epochs):
for i,(images,labels) in enumerate(train_loader):
if torch.cuda.is_available():
images = Variable(images).cuda()
labels = Variable(labels).cuda()
else:
images = Variable(images)
labels = Variable(labels)
optimizer.zero_grad()
outputs = cnn(images)
loss = criterion(outputs,labels)
loss.backward()
optimizer.step()
if (i+1) % 10 == 0:
print('Epoch:[%d/%d],Step:[%d/%d],Loss:%.4f' % (
epoch + 1, num_epochs, i + 1, len(train_datasets) // batch_size, loss.item()))
cnn.eval()
correct = 0
total = 0
for j,(images,labels) in enumerate(test_loader):
if torch.cuda.is_available():
images = Variable(images).cuda()
else:
images = Variable(images)
outputs = cnn(images)
_,predicted = torch.max(outputs.data,1)
total += labels.shape[0]
correct += (predicted==labels).sum()
print('Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
torch.save(cnn.state_dict(),'cnn_model.pkl')