数据仓库概述
1.什么是数据库
数据库(Database)是按照数据结构来组织、存储和管理数据的建立在计算机存储设备上的仓库。
数据库是长期储存在计算机内、有组织的、可共享的数据集合。数据库中的数据指的是 以一定的数据模型组织、描述和储存在一起、具有尽可能小的冗余度、较高的数据独立性和 易扩展性的特点并可在一定范围内为多个用户共享。
常用的数据库有 MySQL、ORACLE、SQL Server 等。
2.什么是数据仓库
数据仓库之父比尔·恩门(Bill Inmon)在1991年出版的“Building the Data Warehouse”(《建立数据仓库》)一书中所提出的定义被广泛接受——数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策(Decision Making Support)。
数据仓库的特征:面向主题、集成性、相对稳定性、反映历史变化、效率足够高,用于支持管理决策。
数据仓库的意义:对企业的所有数据进行汇总,为企业各个部门提供统一的, 规范的数据出口。
数据仓库的目标:实现集成、稳定、反映历史变化有组织有结构的存储数据的集合。
• 面向主题:数据仓库中的数据是按照一定的主题域进行组织的,每一个主题对应一个宏观的分析领域。数据仓库排除对于决策无用的数据,提供特定主题的简明视图。
• 集成的:企业内不同业务部门数据的完整集成。对于企业内所有数据的集成要注意一致性(假设财务系统中对于性别使用 F/M,而 OA 系统对性别使用 A/B,这就是数据不一致,如果想搭建企业级的数据仓库,需要数据具有一 致性)。
• 相对稳定的:数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。
• 反映历史变化:数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。
• 效率足够高:数据仓库的分析数据一般分为日、周、月、季、年等,可以看出,日为周期的数据要求的效率最高,要求24小时甚至12小时内,客户能看到昨天的数据分析。由于有的企业每日的数据量很大,设计不好的数据仓库经常会出问题,延迟1-3日才能给出数据,显然不行的。
3.数据库(OLTP)与数据仓库(OLAP)的区别
操作型处理,叫联机事务处理OLTP(On-Line Transaction Processing),也可以称面向交易的处理系统,它是针对具体业务在数据库联机的日常操作,通常对少数记录进行查询、修改。用户较为关心操作的响应时间、数据的安全性、完整性和并发支持的用户数等问题。传统的数据库系统作为数据管理的主要手段,主要用于操作型处理。
分析型处理,叫联机分析处理OLAP(On-Line Analytical Processing)一般针对某些主题的历史数据进行分析,支持管理决策。
OLTP 与 OLAP 的异同如下表:
操作型处理 |
分析型处理 |
细节的 |
综合的或提炼的 |
实体-关系(ER)模型 |
星型或雪花模型 |
存取瞬间数据 |
存储历史数据,不包含最近的数据 |
可更新的 |
只读,只追加 |
一次操作一个单元 |
一次操作一个集合 |
性能要求高,响应时间短 |
性能要求宽松 |
面向事务 |
面向分析 |
一次操作数据量小 |
一次操作数据量大 |
支持日常操作 |
支持决策需求 |
数据量小 |
数据量大 |
客户订单、库存水平和银行账户等 |
客户收益分析、市场细分等 |
4.数据仓库发展历程
数据仓库的发展大致经历了这样的三个过程:
• 简单报表阶段:这个阶段,系统的主要目标是解决一些日常的工作中业务人员需要的报表,以及生成一些简单的能够帮助领导进行决策所需要的汇总数据。这个阶段的大部分表现形式为数据库和前端报表工具。
• 数据集市阶段:这个阶段,主要是根据某个业务部门的需要,进行一定的数据的采集,整理,按照业务人员的需要,进行多维报表的展现,能够提供对特定业务指导的数据,并且能够提供特定的领导决策数据。
• 数据仓库阶段:这个阶段,主要是按照一定的数据模型,对整个企业的数据进行采集,整理,并且能够按照各个业务部门的需要,提供跨部门的,完全一致的业务报表数据,能够通过数据仓库生成对对业务具有指导性的数据,同时,为领导决策提供全面的数据支持。
通过数据仓库建设的发展阶段,我们能够看出,数据仓库的建设和数据集市的建设的重要区别就在于数据模型的支持。因此,数据模型的建设,对于我们数据仓库的建设,有着决定性的意义。
5.数据仓库基本架构
数据仓库的目的是构建面向分析的集成化数据环境,为企业提供决策支持(Decision Support)。其实数据仓库本身并不生产任何数据,同时自身也不需要“消费”任何的数据,数据来源于外部,并且开放给外部应用,这也是为什么叫“仓库”,而不叫“工厂”的原因。因此数据仓库的基本架构主要包含的是数据流入流出的过程,可以分为三层——源数据、数据仓库、数据应用:
从图中可以看出数据仓库的数据来源于不同的源数据,并提供多样的数据应用,数据自上而下流入数据仓库后向上层开放应用,而数据仓库只是中间集成化数据管理的一个平台。
数据仓库从各数据源获取数据及在数据仓库内的数据转换和流动都可以认为是ETL(抽取Extra, 转化Transfer, 装载Load)的过程,ETL是数据仓库的流水线,也可以认为是数据仓库的血液,它维系着数据仓库中数据的新陈代谢,而数据仓库日常的管理和维护工作的大部分精力就是保持ETL的正常和稳定。