OpenCV3之——图像分割(分水岭算法watershed())
分水岭计算分两个步骤:一个是排序过程,一个是淹没的过程。首先对每个像素的灰度级进行从低到高的排序,然后从低到高实现淹没过程,对每一个局部极小值在h阶高度的影响域采用先进先出的结构进行判断及标注。分水岭变换得到的是输入图像的集水盆地图像,集水盆地的边界点,即为分水岭。显然,分水岭表示的是输入图像的极大值点。
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;
#define WINDOW_NAME1 "程序窗口1"
Mat g_maskImage, g_srcImage;
Point prevPt(-1, -1);
static void on_Mouse(int event, int x, int y, int flags, void*);
int main(int argc,char** argv) {
g_srcImage = imread("1.jpg");
imshow(WINDOW_NAME1, g_srcImage);
Mat srcImage, grayImage;
g_srcImage.copyTo(srcImage);
cvtColor(g_srcImage, g_maskImage, COLOR_BGR2GRAY);
cvtColor(g_maskImage, grayImage, COLOR_GRAY2BGR);
g_maskImage = Scalar::all(0);
//设置鼠标回调函数
setMouseCallback(WINDOW_NAME1, on_Mouse, 0);
//轮询按键,进行处理
while (1) {
//获取键值
int c = waitKey(0);
//若键值为ESC时,退出
if ((char)c == 27)
break;
//按键值为2时,恢复源图
if ((char)c == '2') {
g_maskImage = Scalar::all(0);
srcImage.copyTo(g_srcImage);
imshow("iamge", g_srcImage);
}
//若检测到按键为1或者空格,则进行处理
if ((char)c == '1' || (char)c == ' ') {
//定义一些参数
int i, j, compCount = 0;
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
//寻找轮廓
findContours(g_maskImage, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
//轮廓为空时的处理
if (contours.empty()) {
continue;
}
//复制掩膜
Mat maskImage(g_maskImage.size(), CV_32S);
maskImage = Scalar::all(0);
//循环绘制出轮廓
for (int index = 0; index >= 0; index = hierarchy[index][0], compCount++) {
drawContours(maskImage, contours, index, Scalar::all(compCount + 1), -1, 8, hierarchy, INT_MAX);
}
//compCount为0时的处理
if (compCount == 0)
continue;
//生成随机颜色
vector<Vec3b> colorTab;
for (i = 0; i < compCount; i++) {
int b = theRNG().uniform(0, 255);
int g = theRNG().uniform(0, 255);
int r = theRNG().uniform(0, 255);
colorTab.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
}
//计算处理时间并输出到窗口中
double dTime = (double)getTickCount();
watershed(srcImage, maskImage);
dTime = (double)getTickCount() - dTime;
printf("\t处理时间 = %gms\n", dTime*1000. / getTickFrequency());
//双层循环,将分水岭图像遍历存入watershedImage中
Mat watershedImage(maskImage.size(), CV_8UC3);
for(i = 0;i<maskImage.rows;i++)
for (j = 0; j < maskImage.cols; j++) {
int index = maskImage.at<int>(i, j);
if (index == -1)
watershedImage.at<Vec3b>(i, j) = Vec3b(255, 255, 255);
else if (index <= 0 || index > compCount)
watershedImage.at<Vec3b>(i, j) = Vec3b(0, 0, 0);
else
watershedImage.at<Vec3b>(i, j) = colorTab[index - 1];
}
//混合灰度图和分水岭效果图并显示最终窗口
watershedImage = watershedImage * 0.5 + grayImage * 0.5;
//(watershedImage, 0.5, grayImage, 0.5, 0, watershedImage);
imshow("watershed transform", watershedImage);
}
}
return 0;
}
static void on_Mouse(int event, int x, int y, int flags, void*) {
//处理鼠标不在窗口中的情况
if (x < 0 || x >= g_srcImage.cols || y < 0 || y >= g_srcImage.rows)
return;
//处理鼠标左键相关消息
if (event == EVENT_LBUTTONUP || !(flags&&EVENT_FLAG_LBUTTON))
prevPt = Point(-1, -1);
else if (event == EVENT_LBUTTONDOWN)
prevPt = Point(x, y);
//鼠标左键按下并移动,绘出白色线条
else if (event == EVENT_MOUSEMOVE && (flags&EVENT_FLAG_LBUTTON)) {
Point pt(x, y);
if (prevPt.x < 0)
prevPt = pt;
line(g_maskImage, prevPt, pt, Scalar::all(255), 5, 8, 0);
line(g_srcImage, prevPt, pt, Scalar::all(255), 5, 8, 0);
prevPt = pt;
imshow(WINDOW_NAME1, g_srcImage);
}
}
效果: