Python + OpenCV 学习笔记(九)>>> 图像二值化
具体参见OpenCV 用户手册
全局阈值
共有5 种二值化方法:
其图像解释为:
import cv2 as cv
def threshold_demo(image):
src = cv.imread(image)
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY) #先转化为灰度图
#ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_TRIANGLE) #阈值自动赋值,该函数输出两个参数,第一个是阈值,第二个是输出的二值化图像
print('Threshold value %s ' %ret)
cv.imshow('binary', binary)
threshold_demo('/home/pi/Desktop/woman.jpg')
cv.waitKey(0)
cv.destroyAllWindows()
THRESH_TRIANGLE 相较于THRESH_OTSU 更加适合于某个像素值的数量远多于其他像素值数量时
若要对阈值进行手动赋值,则:
ret, binary = cv.threshold(gray, 150, 255, cv.THRESH_BINARY)
第二个实参则为阈值,当第二个实参不为零时,对于图像的阈值赋值方式失去作用| cv.THRESH_TRIANGLE
像素取反(大于阈值为黑,反之为白)
ret, binary = cv.threshold(gray, 117, 255, cv.THRESH_BINARY_INV)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
局部阈值
具体参见OpenCV 用户手册
def local_threshold(image):
src = cv.imread(image)
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
binary = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 25, $
binary2 = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, 25, 10)
cv.imshow('Gaussian', binary)
cv.imshow('MEAN', binary2)
与全局阈值进行对比:
可见局部阈值对图形边缘绘制更加细腻
Gaussian 局部阈值和MEAN 局部阈值比较:
代码层面知识点
OpenCV 中图像二值化方法
- OTSU
- Triangle
- 自动与手动