等待一个进程的回复Erlang
是否有可能在模块module1的函数funct1中产生一个进程p,向模块1的函数funct2中的p发送消息并等待函数funct2中的p的回复,而不必产卵因此被认为是self()的f2?如果是这样,那么执行等待部分的最佳方式是什么?你可以看到下面的代码,以概述我在找什么。 在此先感谢。等待一个进程的回复Erlang
-module(module1)
...
funct1(...)
->
Pid = spawn(module2, function3, [[my_data]]),
...
funct2(...)
->
...
Pid ! {self(), {data1, data2}},
% wait here for the reply from Pid
% do something here based on the reply.
答案
是。
真正的问题
你混为一谈三个概念:
- 过程(谁是
self()
,什么是pid()
) - 功能
- 模块
一过程是一个生物。一个进程有它自己的内存空间。这些进程是拨打电话的东西。这是真正重要的唯一身份。当你考虑“在这种情况下谁是self()
”时,你确实在问“什么是调用上下文?”如果我生成一个进程的两个实例,他们都可能在他们生命中的某个时刻调用相同的函数 - 但这些调用的上下文完全不同,因为这些进程有自己的生活和自己的内存空间。仅仅因为维克多和维多利亚都在同一时间跳绳,并不能使他们成为同一个人。
当人们对调用上下文感到困惑时,最多的是编写模块接口函数。为了简单起见,大多数模块都是以一种只定义一个进程的方式编写的。没有规定要求这样做,但是很容易理解一个模块以这种方式写入时的功能。接口函数被导出并可供任何进程调用 - 并且它们在调用它们的进程的上下文中调用,而不是在被生成为“是该模块的实例”的进程的上下文中并运行服务循环在此定义。
虽然没有什么陷阱该模块内的一个进程“内”。我可以编写一对模块,一个定义狮子的AI,另一个定义鲨鱼的AI,并且有一个过程基本上在执行过程中切换身份 - 但这几乎总是一个非常糟糕的主意(因为它变得混乱)。
功能只是功能。他们就是这样。模块由功能组成。没有比这更多的东西了。
如何等待消息
等候使用receive
构造消息。它匹配收到的消息(这将始终是Erlang术语),并根据消息的形状和/或内容选择要执行的操作。
阅读以下非常仔细地:
1> Talker =
1> fun T() ->
1> receive
1> {tell, Pid, Message} ->
1> ok = io:format("~p: sending ~p message ~p~n", [self(), Pid, Message]),
1> Pid ! {message, Message, self()},
1> T();
1> {message, Message, From} ->
1> ok = io:format("~p: from ~p received message ~p~n", [self(), From, Message]),
1> T();
1> exit ->
1> exit(normal)
1> end
1> end.
#Fun<erl_eval.44.87737649>
2> {Pid1, Ref1} = spawn_monitor(Talker).
{<0.64.0>,#Ref<0.1042362935.2208301058.9128>}
3> {Pid2, Ref2} = spawn_monitor(Talker).
{<0.69.0>,#Ref<0.1042362935.2208301058.9139>}
4> Pid1 ! {tell, Pid2, "A CAPITALIZED MESSAGE! RAAAR!"}.
<0.64.0>: sending <0.69.0> message "A CAPITALIZED MESSAGE! RAAAR!"
{tell,<0.69.0>,"A CAPITALIZED MESSAGE! RAAAR!"}
<0.69.0>: from <0.64.0> received message "A CAPITALIZED MESSAGE! RAAAR!"
5> Pid2 ! {tell, Pid1, "a lower cased message..."}.
<0.69.0>: sending <0.64.0> message "a lower cased message..."
{tell,<0.64.0>,"a lower cased message..."}
<0.64.0>: from <0.69.0> received message "a lower cased message..."
6> Pid1 ! {tell, Pid1, "Sending myself a message!"}.
<0.64.0>: sending <0.64.0> message "Sending myself a message!"
{tell,<0.64.0>,"Sending myself a message!"}
<0.64.0>: from <0.64.0> received message "Sending myself a message!"
7> Pid1 ! {message, "A direct message from the shell", self()}.
<0.64.0>: from <0.67.0> received message "A direct message from the shell"
{message,"A direct message from the shell",<0.67.0>}
一个独立的例子
现在考虑乒乓服务的这个escript。注意里面只有一个种说话者,它知道如何处理target
,ping
和pong
消息。
#! /usr/bin/env escript
-mode(compile).
main([CountString]) ->
Count = list_to_integer(CountString),
ok = io:format("~p: Starting pingpong script. Will iterate ~p times.~n", [self(), Count]),
P1 = spawn_link(fun talker/0),
P2 = spawn_link(fun talker/0),
pingpong(Count, P1, P2).
pingpong(Count, P1, P2) when Count > 0 ->
P1 ! {target, P2},
P2 ! {target, P1},
pingpong(Count - 1, P1, P2);
pingpong(_, P1, P2) ->
_ = erlang:send_after(1000, P1, {exit, self()}),
_ = erlang:send_after(1000, P2, {exit, self()}),
wait_for_exit([P1, P2]).
wait_for_exit([]) ->
ok = io:format("~p: All done, Returing.~n", [self()]),
halt(0);
wait_for_exit(Pids) ->
receive
{exiting, Pid} ->
ok = io:format("~p: ~p is done.~n", [self(), Pid]),
NewPids = lists:delete(Pid, Pids),
wait_for_exit(NewPids)
end.
talker() ->
receive
{target, Pid} ->
ok = io:format("~p: Sending ping to ~p~n", [self(), Pid]),
Pid ! {ping, self()},
talker();
{ping, From} ->
ok = io:format("~p: Received ping from ~p. Replying with pong.~n", [self(), From]),
From ! pong,
talker();
pong ->
ok = io:format("~p: Received pong.~n", [self()]),
talker();
{exit, From} ->
ok = io:format("~p: Received exit message from ~p. Retiring.~n", [self(), From]),
From ! {exiting, self()}
end.
还有一些细节在那里,就像使用erlang:send_after/3
被使用,因为短信发送是如此之快它将击败调用的速度io:format/2
减慢实际talker
过程和导致奇怪的情况下,出口消息(通常)在两个谈话者之间的ping和pongs之前到达。
这是在运行时会发生什么:
[email protected]:~/Code/erlang$ ./pingpong 2
<0.5.0>: Starting pingpong script. Will iterate 2 times.
<0.61.0>: Sending ping to <0.62.0>
<0.62.0>: Sending ping to <0.61.0>
<0.61.0>: Sending ping to <0.62.0>
<0.62.0>: Sending ping to <0.61.0>
<0.61.0>: Received ping from <0.62.0>. Replying with pong.
<0.62.0>: Received ping from <0.61.0>. Replying with pong.
<0.61.0>: Received ping from <0.62.0>. Replying with pong.
<0.62.0>: Received ping from <0.61.0>. Replying with pong.
<0.61.0>: Received pong.
<0.62.0>: Received pong.
<0.61.0>: Received pong.
<0.62.0>: Received pong.
<0.61.0>: Received exit message from <0.5.0>. Retiring.
<0.62.0>: Received exit message from <0.5.0>. Retiring.
<0.5.0>: <0.61.0> is done.
<0.5.0>: <0.62.0> is done.
<0.5.0>: All done, Returing.
如果你运行了几次(或在繁忙的运行时间)有机会的话,一些输出的将是不同的顺序。这只是并发性的本质。
如果您是Erlang的新手,上面的代码可能需要一段时间才能沉入其中。您可以自己使用pingpong脚本。编辑它。让它做新的事情。创建一个ping过程的三角形。产生奇怪事物的谈话者的随机电路。一旦你搞砸了,这会很有意义。
非常感谢您提供如此详细的答案。它真的帮助了我。我打算实现的等待过程是由gen_server调用支持的过程。因此,我没有产生一个过程来保存一些数据,并自己实现一个等待机制,我终于不得不实现一个gen_server。 –