二分类问题评价指标
1. 分类情况:
针对一个二分类问题,将实例分成正类(postive)或者负类(negative)。但是实际中分类时,会出现四种情况.
(1)若一个实例是正类并且被预测为正类,即为真阳性(True Postive TP)
(2)若一个实例是正类,但是被预测成为负类,即为伪阴性(False Negative FN)
(3)若一个实例是负类,但是被预测成为正类,即为伪阳性(False Postive FP)
(4)若一个实例是负类,但是被预测成为负类,即为真阴性(True Negative TN)
TP:正确的肯定数目
FN:漏报,没有找到正确匹配的数目
FP:误报,没有的匹配不正确
TN:正确拒绝的非匹配数目
2. 准确率ACC
ACC = (TP + TN) / (P + N)
即:(真阳性+真阴性) / 总样本数
3. 精准率和召回率
精确率 :P = TP / (TP + FP)
召回率: R = TP / (TP + FN)
F1: 精确率和召回率的调和平均。 即: 2/F1 = 1/P + 1/R
直观上来解释精确率和召回率。
精确率表示我现在有了这么的预测为正的样本,那么这些样本中有多少是真的为正呢?
召回率表示我现在预测为正的这些值中,占了所有的正的为正的样本的多大比例呢?
不同的分类问题,对精确率和召回率的要求也不同。
例如:假币预测,就需要很高的精确率,我需要你给我的预测数据具有很高的准确性。
肿瘤预测就需要很高的召回率。“宁可错杀三千,不可放过一个”。
4. roc曲线
1、roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。
横轴:伪阳性率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例;(1-Specificity)
纵轴:真阳性率(true postive rate TPR)灵敏度,Sensitivity(正类覆盖率)
由上表可得出横,纵轴的计算公式:
(1)真阳性率(True Postive Rate)TPR: TP/(TP+FN),代表分类器预测的正类中实际正实例占所有正实例的比例。Sensitivity
(2)伪阳性率(False Postive Rate)FPR: FP/(FP+TN),代表分类器预测的正类中实际负实例占所有负实例的比例。1-Specificity
(3)真阴性率(True Negative Rate)TNR: TN/(FP+TN),代表分类器预测的负类中实际负实例占所有负实例的比例,TNR=1-FPR。Specificity
假设采用逻辑回归分类器,其给出针对每个实例为正类的概率,那么通过设定一个阈值如0.6,概率大于等于0.6的为正类,小于0.6的为负类。对应的就可以算出一组(FPR,TPR),在平面中得到对应坐标点。随着阈值的逐渐减小,越来越多的实例被划分为正类,但是这些正类中同样也掺杂着真正的负实例,即TPR和FPR会同时增大。阈值最大时,对应坐标点为(0,0),阈值最小时,对应坐标点(1,1)。
如下面这幅图,(a)图中实线为ROC曲线,线上每个点对应一个阈值。
横轴FPR:1-TNR,1-Specificity,FPR越大,预测正类中实际负类越多。
纵轴TPR:Sensitivity(正类覆盖率),TPR越大,预测正类中实际正类越多。
理想目标:TPR=1,FPR=0,即图中(0,1)点,故ROC曲线越靠拢(0,1)点,越偏离45度对角线越好,Sensitivity、Specificity越大效果越好。
2. 如何画roc曲线
假设已经得出一系列样本被划分为正类的概率,然后按照大小排序,下图是一个示例,图中共有20个测试样本,“Class”一栏表示每个测试样本真正的标签(p表示正样本,n表示负样本),“Score”表示每个测试样本属于正样本的概率。
接下来,我们从高到低,依次将“Score”值作为阈值threshold,当测试样本属于正样本的概率大于或等于这个threshold时,我们认为它为正样本,否则为负样本。举例来说,对于图中的第4个样本,其“Score”值为0.6,那么样本1,2,3,4都被认为是正样本,因为它们的“Score”值都大于等于0.6,而其他样本则都认为是负样本。每次选取一个不同的threshold,我们就可以得到一组FPR和TPR,即ROC曲线上的一点。这样一来,我们一共得到了20组FPR和TPR的值,将它们画在ROC曲线的结果如下图:
3. AUC(Area under Curve):Roc曲线下的面积,介于0.1和1之间。Auc作为数值可以直观的评价分类器的好坏,值越大越好。
首先AUC值是一个概率值,当你随机挑选一个正样本以及负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值,AUC值越大,当前分类算法越有可能将正样本排在负样本前面,从而能够更好地分类。
1、AUC计算1. 最直观的,根据AUC这个名称,我们知道,计算出ROC曲线下面的面积,就是AUC的值。事实上,这也是在早期 Machine Learning文献中常见的AUC计算方法。由于我们的测试样本是有限的。我们得到的AUC曲线必然是一个阶梯状的。因此,计算的AUC也就是这些阶梯 下面的面积之和。这样,我们先把score排序(假设score越大,此样本属于正类的概率越大),然后一边扫描就可以得到我们想要的AUC。但是,这么 做有个缺点,就是当多个测试样本的score相等的时候,我们调整一下阈值,得到的不是曲线一个阶梯往上或者往右的延展,而是斜着向上形成一个梯形。此 时,我们就需要计算这个梯形的面积。由此,我们可以看到,用这种方法计算AUC实际上是比较麻烦的。
2. 一个关于AUC的很有趣的性质是,它和Wilcoxon-Mann-Witney Test是等价的。这个等价关系的证明留在下篇帖子中给出。而Wilcoxon-Mann-Witney Test就是测试任意给一个正类样本和一个负类样本,正类样本的score有多大的概率大于负类样本的score。有了这个定义,我们就得到了另外一中计 算AUC的办法:得到这个概率。我们知道,在有限样本中我们常用的得到概率的办法就是通过频率来估计之。这种估计随着样本规模的扩大而逐渐逼近真实值。这 和上面的方法中,样本数越多,计算的AUC越准确类似,也和计算积分的时候,小区间划分的越细,计算的越准确是同样的道理。具体来说就是统计一下所有的 M×N(M为正类样本的数目,N为负类样本的数目)个正负样本对中,有多少个组中的正样本的score大于负样本的score。当二元组中正负样本的 score相等的时候,按照0.5计算。然后除以MN。实现这个方法的复杂度为O(n^2)。n为样本数(即n=M+N)3. 第三种方法实际上和上述第二种方法是一样的,但是复杂度减小了。它也是首先对score从大到小排序,然后令最大score对应的sample 的rank为n,第二大score对应sample的rank为n-1,以此类推。然后把所有的正类样本的rank相加,再减去M-1种两个正样本组合的情况。得到的就是所有的样本中有多少对正类样本的score大于负类样本的score。然后再除以M×N。即
公式解释:
1、为了求的组合中正样本的score值大于负样本,如果所有的正样本score值都是大于负样本的,那么第一位与任意的进行组合score值都要大,我们取它的rank值为n,但是n-1中有M-1是正样例和正样例的组合这种是不在统计范围内的(为计算方便我们取n组,相应的不符合的有M个),所以要减掉,那么同理排在第二位的n-1,会有M-1个是不满足的,依次类推,故得到后面的公式M*(M+1)/2,我们可以验证在正样本score都大于负样本的假设下,AUC的值为1
2、根据上面的解释,不难得出,rank的值代表的是能够产生score前大后小的这样的组合数,但是这里包含了(正,正)的情况,所以要减去这样的组(即排在它后面正例的个数),即可得到上面的公式
另外,特别需要注意的是,再存在score相等的情况时,对相等score的样本,需要 赋予相同的rank(无论这个相等的score是出现在同类样本还是不同类的样本之间,都需要这样处理)。具体操作就是再把所有这些score相等的样本 的rank取平均。然后再使用上述公式。
为什么使用ROC曲线
既然已经这么多评价标准,为什么还要使用ROC和AUC呢?因为ROC曲线有个很好的特性:当测试集中的正负样本的分布变化的时候,ROC曲线能够保持不变。在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间变化。
其他评估指标
Informedness = Sensitivity + Specificity - 1 |
参考: