消息中间件-kafka
什么是Kafka
kafka最初是LinkedIn的一个内部基础设施系统。最初开发的起因是,LinkedIn虽然有了数据库和其他系统可以用来存储数据,但是缺乏一个可以帮助处理持续数据流的组件。所以在设计理念上,开发者不想只是开发一个能够存储数据的系统,如关系数据库、Nosql数据库、搜索引擎等等,更希望把数据看成一个持续变化和不断增长的流,并基于这样的想法构建出一个数据系统,一个数据架构。
Kafka可以看成一个流平台,这个平台上可以发布和订阅数据流,并把他们保存起来,进行处理。Kafka有点像消息系统,允许发布和订阅消息流,但是它和传统的消息系统有很大的差异,首先,Kafka是个现代分布式系统,以集群的方式运行,可以自由伸缩。其次,Kafka可以按照要求存储数据,保存多久都可以,第三,流式处理将数据处理的层次提示到了新高度,消息系统只会传递数据,Kafka的流式处理能力可以让我们用很少的代码就能动态地处理派生流和数据集。所以Kafka不仅仅是个消息中间件。
同时在大数据领域,Kafka还可以看成实时版的Hadoop,Hadoop可以存储和定期处理大量的数据文件,往往以TB计数,而Kafka可以存储和持续处理大型的数据流。Hadoop主要用在数据分析上,而Kafka因为低延迟,更适合于核心的业务应用上。
本次课程,将会以kafka_2.11-0.10.1.1版本为主,其余版本不予考虑。
Kafka中的基本概念
消息和批次
消息,Kafka里的数据单元,也就是我们一般消息中间件里的消息的概念。消息由字节数组组成。消息还可以包含键,用以对消息选取分区。
为了提高效率,消息被分批写入Kafka。批次就是一组消息,这些消息属于同一个主题和分区。如果只传递单个消息,会导致大量的网络开销,把消息分成批次传输可以减少这开销。但是,这个需要权衡,批次里包含的消息越多,单位时间内处理的消息就越多,单个消息的传输时间就越长。如果进行压缩,可以提升数据的传输和存储能力,但需要更多的计算处理。
主题和分区
Kafka里的消息用主题进行分类,主题下有可以被分为若干个分区。分区本质上是个提交日志,有新消息,这个消息就会以追加的方式写入分区,然后用先入先出的顺序读取。
但是因为主题会有多个分区,所以在整个主题的范围内,是无法保证消息的顺序的,单个分区则可以保证。
Kafka通过分区来实现数据冗余和伸缩性,因为分区可以分布在不同的服务器上,那就是说一个主题可以跨越多个服务器。
前面我们说Kafka可以看成一个流平台,很多时候,我们会把一个主题的数据看成一个流,不管有多少个分区。
生产者和消费者、偏移量、消费者群组
就是一般消息中间件里生产者和消费者的概念。一些其他的高级客户端API,像数据管道API和流式处理的Kafka Stream,都是使用了最基本的生产者和消费者作为内部组件,然后提供了高级功能。
生产者默认情况下把消息均衡分布到主题的所有分区上,如果需要指定分区,则需要使用消息里的消息键和分区器。
消费者订阅主题,一个或者多个,并且按照消息的生成顺序读取。消费者通过检查所谓的偏移量来区分消息是否读取过。偏移量是一种元数据,一个不断递增的整数值,创建消息的时候,Kafka会把他加入消息。在一个分区里,每个消息的偏移量是唯一的。每个分区最后读取的消息偏移量会保存到Zookeeper或者Kafka上,这样分区的消费者关闭或者重启,读取状态都不会丢失。
多个消费者可以构成一个消费者群组。怎么构成?共同读取一个主题的消费者们,就形成了一个群组。群组可以保证每个分区只被一个消费者使用。
消费者和分区之间的这种映射关系叫做消费者对分区的所有权关系,很明显,一个分区只有一个消费者,而一个消费者可以有多个分区。
Broker和集群
一个独立的Kafka服务器叫Broker。broker的主要工作是,1.接收生产者的消息,2.设置偏移量,3.提交消息到磁盘保存;4.为消费者提供服务,响应请求,返回消息。在合适的硬件上,单个broker可以处理上千个分区和每秒百万级的消息量。
多个broker可以组成一个集群。每个集群中broker会选举出一个集群控制器。控制器会进行管理,包括将分区分配给broker和监控broker。
集群里,一个分区从属于一个broker,这个broker被称为首领。但是分区可以被分配给多个broker,这个时候会发生分区复制。
分区复制带来的好处是,提供了消息冗余。一旦首领broker失效,其他broker可以接管领导权。当然相关的消费者和生产者都要重新连接到新的首领上。
保留消息
在一定期限内保留消息是Kafka的一个重要特性,Kafka broker默认的保留策略是:要么保留一段时间,要么保留一定大小。到了限制,旧消息过期并删除。但是每个主题可以根据业务需求配置自己的保留策略。
为什么选择Kafka
优点
多生产者和多消费者
基于磁盘的数据存储,换句话说,Kafka的数据天生就是持久化的。
高伸缩性,Kafka一开始就被设计成一个具有灵活伸缩性的系统,对在线集群的伸缩丝毫不影响整体系统的可用性。
高性能,结合横向扩展生产者、消费者和broker,Kafka可以轻松处理巨大的信息流,同时保证亚秒级的消息延迟。
常见场景
活动跟踪
跟踪网站用户和前端应用发生的交互,比如页面访问次数和点击,将这些信息作为消息发布到一个或者多个主题上,这样就可以根据这些数据为机器学习提供数据,更新搜素结果等等。
传递消息
标准消息中间件的功能
收集指标和日志
收集应用程序和系统的度量监控指标,或者收集应用日志信息,通过Kafka路由到专门的日志搜索系统,比如ES。
提交日志
收集其他系统的变动日志,比如数据库。可以把数据库的更新发布到Kafka上,应用通过监控事件流来接收数据库的实时更新,或者通过事件流将数据库的更新复制到远程系统。
还可以当其他系统发生了崩溃,通过重放日志来恢复系统的状态。
流处理
操作实时数据流,进行统计、转换、复杂计算等等。随着大数据技术的不断发展和成熟,无论是传统企业还是互联网公司都已经不再满足于离线批处理,实时流处理的需求和重要性日益增长。
近年来业界一直在探索实时流计算引擎和API,比如这几年火爆的Spark Streaming、Kafka Streaming、Beam和Flink,其中阿里双11会场展示的实时销售金额,就用的是流计算,是基于Flink,然后阿里在其上定制化的Blink。
Kafka的安装、管理和配置
安装
预备环境
Kafka是Java生态圈下的一员,用Scala编写,运行在Java虚拟机上,所以安装运行和普通的Java程序并没有什么区别。
安装Kafka官方说法,Java环境推荐Java8。
Kafka需要Zookeeper保存集群的元数据信息和消费者信息。Kafka一般会自带Zookeeper,但是从稳定性考虑,应该使用单独的Zookeeper,而且构建Zookeeper集群。
下载和安装Kafka
在http://kafka.apache.org/downloads上寻找合适的版本下载,我们这里选用的是kafka_2.11-0.10.1.1,下载完成后解压到本地目录。
运行
启动Zookeeper
进入Kafka目录下的bin\windows
执行kafka-server-start.bat …/…/config/server.properties,出现以下画面表示成功
Linux下与此类似,进入bin后,执行对应的sh文件即可
基本的操作和管理
##列出所有主题
kafka-topics.bat --zookeeper localhost:2181/kafka --list
##列出所有主题的详细信息
kafka-topics.bat --zookeeper localhost:2181/kafka --describe
##创建主题 主题名 my-topic,1副本,8分区
kafka-topics.bat --zookeeper localhost:2181/kafka --create --topic my-topic --replication-factor 1 --partitions 8
##增加分区,注意:分区无法被删除
kafka-topics.bat --zookeeper localhost:2181/kafka --alter --topic my-topic --partitions 16
##删除主题
kafka-topics.bat --zookeeper localhost:2181/kafka --delete --topic my-topic
##列出消费者群组(仅Linux)
kafka-topics.sh --new-consumer --bootstrap-server localhost:9092/kafka --list
##列出消费者群组详细信息(仅Linux)
kafka-topics.sh --new-consumer --bootstrap-server localhost:9092/kafka --describe --group 群组名
Broker配置
配置文件放在Kafka目录下的config目录中,主要是server.properties文件
常规配置
broker.id
在单机时无需修改,但在集群下部署时往往需要修改。它是个每一个broker在集群中的唯一表示,要求是正数。当该服务器的IP地址发生改变时,broker.id没有变化,则不会影响consumers的消息情况
listeners
监听列表(以逗号分隔 不同的协议(如plaintext,trace,ssl、不同的IP和端口)),hostname如果设置为0.0.0.0则绑定所有的网卡地址;如果hostname为空则绑定默认的网卡。如果
没有配置则默认为java.net.InetAddress.getCanonicalHostName()。
如:PLAINTEXT://myhost:9092,TRACE://:9091或 PLAINTEXT://0.0.0.0:9092,
zookeeper.connect
zookeeper集群的地址,可以是多个,多个之间用逗号分割
log.dirs
Kafka把所有的消息都保存在磁盘上,存放这些数据的目录通过log.dirs指定。
Kafka 核心组成
1)producer先从zookeeper的 "/brokers/…/state"节点找到该partition的leader
2)producer将消息发送给该leader
3)leader将消息写入本地log
4)followers从leader pull消息,写入本地log后向leader发送ACK
5)leader收到所有ISR中的replication的ACK后,增加HW(high watermark,最后commit 的offset)并向producer发送ACK
3.3.1 高级API
1)高级API优点
高级API 写起来简单
不需要去自行去管理offset,系统通过zookeeper自行管理
不需要管理分区,副本等情况,系统自动管理
消费者断线会自动根据上一次记录在zookeeper中的offset去接着获取数据(默认设置1分钟更新一下zookeeper中存的的offset)
可以使用group来区分对同一个topic 的不同程序访问分离开来(不同的group记录不同的offset,这样不同程序读取同一个topic才不会因为offset互相影响)
2)高级API缺点
不能自行控制offset(对于某些特殊需求来说)
不能细化控制如分区、副本、zk等
3.3.2 低级API
1)低级 API 优点
能够开发者自己控制offset,想从哪里读取就从哪里读取。
自行控制连接分区,对分区自定义进行负载均衡
对zookeeper的依赖性降低(如:offset不一定非要靠zk存储,自行存储offset即可,比如存在文件或者内存中)
2)低级API缺点
太过复杂,需要自行控制offset,连接哪个分区,找到分区leader 等
3.3.3 消费者组
消费者是以consumer group消费者组的方式工作,由一个或者多个消费者组成一个组,共同消费一个topic。每个分区在同一时间只能由group中的一个消费者读取,但是多个group
可以同时消费这个partition。在图中,有一个由三个消费者组成的group,有一个消费者读取主题中的两个分区,另外两个分别读取一个分区。某个消费者读取某个分区,也可以叫做某个消费者是某个分区的拥有者。
在这种情况下,消费者可以通过水平扩展的方式同时读取大量的消息。另外,如果一个消费者失败了,那么其他的group成员会自动负载均衡读取之前失败的消费者读取的分区。
3.3.4 消费方式
consumer采用pull(拉)模式从broker中读取数据。
push(推)模式很难适应消费速率不同的消费者,因为消息发送速率是由broker决定的。它的目标是尽可能以最快速度传递消息,但是这样很容易造成consumer来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而pull模式则可以根据consumer的消费能力以适当的速率消费消息。
对于Kafka而言,pull模式更合适,它可简化broker的设计,consumer可自主控制消费消息的速率,同时consumer可以自己控制消费方式——即可批量消费也可逐条消费,同时还能选择不同的提交方式从而实现不同的传输语义。
五 Kafka producer拦截器(interceptor)
5.1 拦截器原理
Producer拦截器(interceptor)是在Kafka 0.10版本被引入的,主要用于实现clients端的定制化控制逻辑。
对于producer而言,interceptor使得用户在消息发送前以及producer回调逻辑前有机会对消息做一些定制化需求,比如修改消息等。同时,producer允许用户指定多个interceptor按序作用于同一条消息从而形成一个拦截链(interceptor chain)。Intercetpor的实现接口是org.apache.kafka.clients.producer.ProducerInterceptor,其定义的方法包括:
(1)configure(configs)
获取配置信息和初始化数据时调用。
(2)onSend(ProducerRecord):
该方法封装进KafkaProducer.send方法中,即它运行在用户主线程中。Producer确保在消息被序列化以计算分区前调用该方法。用户可以在该方法中对消息做任何操作,但最好保证不要修改消息所属的topic和分区,否则会影响目标分区的计算
(3)onAcknowledgement(RecordMetadata, Exception):
该方法会在消息被应答之前或消息发送失败时调用,并且通常都是在producer回调逻辑触发之前。onAcknowledgement运行在producer的IO线程中,因此不要在该方法中放入很重的逻辑,否则会拖慢producer的消息发送效率
(4)close:
关闭interceptor,主要用于执行一些资源清理工作
如前所述,interceptor可能被运行在多个线程中,因此在具体实现时用户需要自行确保线程安全。另外倘若指定了多个interceptor,则producer将按照指定顺序调用它们,并仅仅是捕获每个interceptor可能抛出的异常记录到错误日志中而非在向上传递。这在使用过程中要特别留意。
六 kafka Streams
6.1 概述
6.1.1 Kafka Streams
Kafka Streams。Apache Kafka开源项目的一个组成部分。是一个功能强大,易于使用的库。用于在Kafka上构建高可分布式、拓展性,容错的应用程序。
6.1.2 Kafka Streams特点
1)功能强大
高扩展性,弹性,容错
2)轻量级
无需专门的集群
一个库,而不是框架
3)完全集成
100%的Kafka 0.10.0版本兼容
易于集成到现有的应用程序
4)实时性
毫秒级延迟
并非微批处理
窗口允许乱序数据
允许迟到数据
6.1.3 为什么要有Kafka Stream
当前已经有非常多的流式处理系统,最知名且应用最多的开源流式处理系统有Spark Streaming和Apache Storm。Apache Storm发展多年,应用广泛,提供记录级别的处理能力,当前也支持SQL on Stream。而Spark Streaming基于Apache Spark,可以非常方便与图计算,SQL处理等集成,功能强大,对于熟悉其它Spark应用开发的用户而言使用门槛低。另外,目前主流的Hadoop发行版,如Cloudera和Hortonworks,都集成了Apache Storm和Apache Spark,使得部署更容易。
既然Apache Spark与Apache Storm拥用如此多的优势,那为何还需要Kafka Stream呢?笔者认为主要有如下原因。
第一,Spark和Storm都是流式处理框架,而Kafka Stream提供的是一个基于Kafka的流式处理类库。框架要求开发者按照特定的方式去开发逻辑部分,供框架调用。开发者很难了解框架的具体运行方式,从而使得调试成本高,并且使用受限。而Kafka Stream作为流式处理类库,直接提供具体的类给开发者调用,整个应用的运行方式主要由开发者控制,方便使用和调试。
第二,虽然Cloudera与Hortonworks方便了Storm和Spark的部署,但是这些框架的部署仍然相对复杂。而Kafka Stream作为类库,可以非常方便的嵌入应用程序中,它对应用的打包和部署基本没有任何要求。
第三,就流式处理系统而言,基本都支持Kafka作为数据源。例如Storm具有专门的kafka-spout,而Spark也提供专门的spark-streaming-kafka模块。事实上,Kafka基本上是主流的流式处理系统的标准数据源。换言之,大部分流式系统中都已部署了Kafka,此时使用Kafka Stream的成本非常低。
第四,使用Storm或Spark Streaming时,需要为框架本身的进程预留资源,如Storm的supervisor和Spark on YARN的node manager。即使对于应用实例而言,框架本身也会占用部分资源,如Spark Streaming需要为shuffle和storage预留内存。但是Kafka作为类库不占用系统资源。
第五,由于Kafka本身提供数据持久化,因此Kafka Stream提供滚动部署和滚动升级以及重新计算的能力。
第六,由于Kafka Consumer Rebalance机制,Kafka Stream可以在线动态调整并行度。