linux中probe函数中传递的参数来源

 linux中probe函数传递参数的寻找(上)

https://blog.csdn.net/xiafeng1113/article/details/8236299

        上一篇中,我们追踪了probe函数在何时调用,知道了满足什么条件会调用probe函数,但probe函数中传递的参数我们并不知道在何时定义,到底是谁定义的,反正不是我们在驱动中定义的(当然,驱动中也不会定义设备的详细信息),但也不是在我们设备信息定义时的结构体。这就相当于武林绝学中只打通了任脉,而督脉还没打通,要想成为武林高手还差一步,本文就致力于打通我们设备驱动probe函数的任督二脉,做到正向逆向全顺畅,当任督二脉全都打通后,。。。,就可以独步武林、指点*啦,再然后按照武林高手成名后既定的流程,该寂寞地隐去了(好像又再做白日梦了),当然了Linux中值得我们要学的多着呢,除了编写内核的那帮家伙们偶尔会寂寞下外,我们还是没有多少时间留给我们寂寞的(^_^)。

         虽然不知道probe函数的参数怎么来的,但没吃过猪肉,还是见过猪跑的,有点关系就能找到出路。经常听说:先注册设备时,内核会将设备信息挂到设备链上,然后等待命中注定的有缘的设备驱动mm or gg。so,我们可以猜想:应该是设备注册的时候,内核将设备信息挂到上面去的,按照这个猜想,我们应该先从设备注册入手,但是这么多函数到底朝哪个方向努力呀?所以,先从传递的参数入手,查看下,等走不通了在去从设备注册入手,起码有了努力的方向了。

调用probe函数的是:static int really_probe(struct device *dev, struct device_driver*drv),里面有调用ret = dev->bus->probe(dev)和ret =drv->probe(dev)。函数如下:

static int really_probe(struct device *dev, struct device_driver *drv)

{

         intret = 0;

......

 

         if (dev->bus->probe) {

                   ret = dev->bus->probe(dev);

                   if (ret)

                            goto probe_failed;

         } else if (drv->probe) {

                   ret = drv->probe(dev);

                   if (ret)

                            goto probe_failed;

         }

 

......

         returnret;

}

这里的参数dev是上一个函数传递进来的,上一个函数为:int driver_probe_device(struct device_driver *drv, struct device*dev)

int driver_probe_device(structdevice_driver *drv, struct device *dev)

{

         intret = 0;

  ......

         ret = really_probe(dev, drv);

 

...... 

         returnret;

}

这里的dev又是上一个函数传递进来的,上一个函数为:static int __driver_attach(struct device *dev, void *data)

static int __driver_attach(struct device *dev, void *data)

{

         structdevice_driver *drv = data;

  ......

         device_lock(dev);

         if(!dev->driver)

                   driver_probe_device(drv, dev);

         device_unlock(dev);

        ......

         return0;

}

这里的dev又是上一个函数传递进来的,调用__driver_attach的函数为:int driver_attach(struct device_driver *drv),但本函数没有给__driver_attach传递参数。

int driver_attach(struct  device_driver *drv)

{

         returnbus_for_each_dev(drv->bus, NULL, drv,__driver_attach);

}

         这里面调用了__driver_attach,对应error =fn(dev, data)。第一个参数dev为while ((dev = next_device(&i)) && !error)产生。即dev有i间接产生。

int bus_for_each_dev(struct bus_type  *bus, struct device *start,

                        void *data, int (*fn)(struct device *,void *))

{

         structklist_iter i;

         structdevice *dev;

         interror = 0;

....

 

         klist_iter_init_node(&bus->p->klist_devices, &i,

                                 (start ? &start->p->knode_bus :NULL));

         while ((dev = next_device(&i)) && !error)

                   error = fn(dev, data);

         klist_iter_exit(&i);

         returnerror;

}

之所以是next_device(&i),因为第一个节点为头节点,需要从下一个开始,先看看klist_iter_init_node(&bus->p->klist_devices, &i, (start ? &start->p->knode_bus : NULL))对i干了什么?因为start为NULL,故传递的第三个参数n为NULL。

void klist_iter_init_node(struct klist *k,struct klist_iter *i,

                              struct klist_node *n)

{

         i->i_klist= k;

         i->i_cur= n;

         if(n)

                   kref_get(&n->n_ref);

}

         看来ta没干什么,就是赋了两个值。然后再看最重要的next_device(&i)

static struct device *next_device(struct klist_iter *i)

{

         structklist_node *n = klist_next(i);

         structdevice *dev = NULL;

         structdevice_private *p;

 

         if(n) {

                   p = to_device_private_parent(n);

                   dev = p->device;

         }

         returndev;

}

#define to_device_private_parent(obj)  \

         container_of(obj,struct device_private, knode_parent)

         看到dev由p->device赋值,p为struct device_private,n = i->i_cur为structklist_node 型(后面分析)。为了看懂这个函数,需要补充N多知识,先上几个struct:

struct klist_iter {

         structklist                 *i_klist;

         structklist_node      *i_cur;

};

 

struct klist {

         spinlock_t                  k_lock;

         structlist_head        k_list;

         void                    (*get)(struct klist_node *);

         void                    (*put)(struct klist_node *);

} __attribute__ ((aligned (sizeof(void*))));

 

struct klist_node {

         void                    *n_klist;   /* never access directly */

         structlist_head        n_node;

         structkref                  n_ref;

};

 

struct kref {

         atomic_trefcount;

};

 linux中probe函数中传递的参数来源

 

         其中的klist_iter_init_node(&bus->p->klist_devices, &i,(start ?&start->p->knode_bus : NULL))作用是定义个klist_iter指向此klist,以便以后直接使用,如图:

 

 linux中probe函数中传递的参数来源

         再把关键的函数拷到此处,以遍分析:

         while ((dev = next_device(&i)) && !error)

                   error = fn(dev, data);

static struct device *next_device(struct klist_iter *i)

{

         structklist_node *n = klist_next(i);

         structdevice *dev = NULL;

         structdevice_private *p;

 

         if(n) {

                   p = to_device_private_parent(n);

                   dev = p->device;

         }

         returndev;

}

 

/**

 *klist_next - Ante up next node in list.

 *@i: Iterator structure.

 *

 *First grab list lock. Decrement the reference count of the previous

 *node, if there was one. Grab the next node, increment its reference

 *count, drop the lock, and return that next node.

 */

struct klist_node *klist_next(struct klist_iter *i)

{

         void(*put)(struct klist_node *) = i->i_klist->put;

         structklist_node *last = i->i_cur;//NULL

         structklist_node *next;

 

         spin_lock(&i->i_klist->k_lock);

 

         if(last) {

                   next= to_klist_node(last->n_node.next);

                   if(!klist_dec_and_del(last))

                            put= NULL;

         }else

                   next= to_klist_node(i->i_klist->k_list.next);

 

         i->i_cur= NULL;

         while(next != to_klist_node(&i->i_klist->k_list)){

                   if(likely(!knode_dead(next))) {

                            kref_get(&next->n_ref);

                            i->i_cur = next;

                            break;

                   }

                   next= to_klist_node(next->n_node.next);

         }

 

         spin_unlock(&i->i_klist->k_lock);

 

         if(put && last)

                   put(last);

         returni->i_cur;

}

         这里last =i->i_cur;为NULL,然后执行next = to_klist_node(i->i_klist->k_list.next);从这个函数来看,就是取出了包含i->i_klist->k_list.next的n_node指针。不过next所指的和n_node地址偏差一个head指针(list_head包括head和next俩指针)。while循环是从第一个目标to_klist_node(i->i_klist->k_list.next)循环,当再次循环到头节点to_klist_node(&i->i_klist->k_list)时截止(这是个循环链表,总会再次循环回来的)。还一个结束的条件,当循环到knode_dead(next)为真时break,不过,likely说明了next通常不会是dead的,(struct klist_node的第一个成员最后一位做标志dead位,网上还说有指针的作用,我觉得好像做了标志位了就不能做指向头节点的指针了,不过void *n_klist名字起得确实很有迷惑性)。

static struct klist_node*to_klist_node(struct list_head *n)

{

         returncontainer_of(n, struct klist_node, n_node);

}

         还一个i的来源,ta是一切的来源。在klist_iter_init_node(&bus->p->klist_devices,&i,                               (start ? &start->p->knode_bus :NULL))中,       i->i_klist = &bus->p->klist_devices;i->i_cur = NULL;

 linux中probe函数中传递的参数来源

 

         Klist_iter找到合适的即停止搜索,找到此处的device_private的device,此结构即为传入probe函数的参数。device源于i(i只是暂时用于查找定义的一个临时变量),而i源于bus,bus源于drv->bus,drv源于sdrv->driver,sdrv即为mx25lx_driver,不过mx25lx_driver->driver中的bus,只给赋了一个值,而在后来调用标准的spi函数时,又重新对bus赋了值spi_bus_type,spi_bus_type是spi.c中的struct bus_type定义的全局变量。

 

linux中probe函数传递参数的寻找(下)

https://blog.csdn.net/xiafeng1113/article/details/8474612?utm_medium=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.channel_param&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.channel_param

         通过追寻driver的脚步,我们有了努力的方向:只有找到spi_bus_type的填充device即可,下面该从device去打通,当两个连通之日,也是任督二脉打通之时。先从设备定义去查看,在mach-smdk6410.c中定义了硬件设备信息,从这作为突破口。

/* for mx25lx*/

static void cs_set_level(unsigned line_id, int lvl) {

   gpio_direction_output(line_id, lvl);

};

 

static struct s3c64xx_spi_csinfos3c64xx_spi1_csinfo = {

       .fb_delay=0x3,

       .line=S3C64XX_GPC(7),

       .set_level=cs_set_level,

};

 

static int mx25lx_ioSetup(struct spi_device*spi)

{

         printk(KERN_INFO"mx25lx: setup gpio pins CS and External Int\n");

         s3c_gpio_setpull(S3C64XX_GPL(8),S3C_GPIO_PULL_UP);              //External interrupt from CAN controller

         s3c_gpio_cfgpin(S3C64XX_GPL(8),S3C_GPIO_SFN(3));                   //External interrupt from CAN controller (hopefully external interrupt)

         //s3c_gpio_cfgpin(S3C64XX_GPL(8),S3C_GPIO_INPUT);                 //External interrupt from CAN controller

         s3c_gpio_setpull(S3C64XX_GPC(7),S3C_GPIO_PULL_NONE);       // Manual chipselect pin as used in 6410_set_cs

         s3c_gpio_cfgpin(S3C64XX_GPC(7),S3C_GPIO_OUTPUT);                // Manualchip select pin as used in 6410_set_cs

         return0;

}

 

static struct mx25lx_platform_datamx25lx_info =

{

         .oscillator_frequency= 8000000,

         .board_specific_setup= mx25lx_ioSetup,

         .transceiver_enable= NULL,

         .power_enable= NULL,

};

 

static struct spi_board_info __initdataforlinx6410_mc251x_info[]  =

{

         {

                   .modalias= "mcp2515",

                   .platform_data = &mx25lx_info,

                   .irq= IRQ_EINT(16),

                   .max_speed_hz= 10*1000*1000, 

                   .bus_num= 1,

                   .chip_select= 0,

                   .mode= SPI_MODE_0,   

                   .controller_data=&s3c64xx_spi1_csinfo,

         },

};

 

struct platform_device s3c64xx_device_spi0= {

         .name                 = "s3c64xx-spi",

         .id               = 0,

         .num_resources         =ARRAY_SIZE(s3c64xx_spi0_resource),

         .resource   =s3c64xx_spi0_resource,

         .dev= {

                   .dma_mask               = &spi_dmamask,

                   .coherent_dma_mask     = DMA_BIT_MASK(32),

                   .platform_data= &s3c64xx_spi0_pdata,

         },

};

 

static struct platform_device*smdk6410_devices[] __initdata =

{

         ……

         /*addby fatfish*/

         &s3c64xx_device_spi0,

         &s3c64xx_device_spi1,

};

 

         其中platform_device定义为:

struct platform_device {

         constchar        * name;

         int              id;

         structdevice    dev;

         u32            num_resources;

         structresource        * resource;

 

         conststruct platform_device_id     *id_entry;

 

         /*MFD cell pointer */

         structmfd_cell *mfd_cell;

 

         /*arch specific additions */

         structpdev_archdata      archdata;

};

 

         初始化函数如下:

static void __initsmdk6410_machine_init(void)

{

         ……

         s3c64xx_spi_set_info(0,0,1);

         s3c64xx_spi_set_info(1,0,1);

         spi_register_board_info(forlinx6410_mc251x_info,ARRAY_SIZE(forlinx6410_mc251x_info));

         ……

}

       其中的注册板信息的函数如下,后项参数为1,其中board_list为spi.c中定义的全局变量,即:static LIST_HEAD(board_list);。

int __init

spi_register_board_info(structspi_board_info const *info, unsigned n)

{

         structboardinfo *bi;

         inti;

 

         bi= kzalloc(n * sizeof(*bi), GFP_KERNEL);

         if(!bi)

                   return-ENOMEM;

 

         for(i = 0; i < n; i++, bi++, info++) {

                   structspi_master *master;

 

                   memcpy(&bi->board_info,info, sizeof(*info));

                   mutex_lock(&board_lock);

                   list_add_tail(&bi->list,&board_list);

                   list_for_each_entry(master,&spi_master_list, list)

                            spi_match_master_to_boardinfo(master,&bi->board_info);

                   mutex_unlock(&board_lock);

         }

 

         return0;

}

         其中结果成员如下:

linux中probe函数中传递的参数来源

 

         先加锁,然后将board_list加入链接中,在遍历设备,最关键的函数是:

static voidspi_match_master_to_boardinfo(struct spi_master *master,

                                     structspi_board_info *bi)

{

         structspi_device *dev;

 

         if(master->bus_num != bi->bus_num)

                   return;

 

         dev= spi_new_device(master, bi);

         if(!dev)

                   dev_err(master->dev.parent,"can't create new device for %s\n",

                            bi->modalias);

}

         spi_new_device作用是实例化一个新设备,定义如下:

struct spi_device *spi_new_device(structspi_master *master,

                                       struct spi_board_info *chip)

{

         structspi_device     *proxy;

         int                       status;

 

 

         proxy= spi_alloc_device(master);

         if(!proxy)

                   returnNULL;

 

……

         strlcpy(proxy->modalias,chip->modalias, sizeof(proxy->modalias));

         proxy->dev.platform_data = (void *)chip->platform_data;

         proxy->controller_data= chip->controller_data;

         proxy->controller_state= NULL;

 

         status= spi_add_device(proxy);

         if(status < 0) {

                   spi_dev_put(proxy);

                   returnNULL;

         }

 

         returnproxy;

}

 

         拷贝了platform_data,即mx25lx_info。其中的spi_alloc_device函数定义如下:

struct spi_device *spi_alloc_device(structspi_master *master)

{

         structspi_device     *spi;

         structdevice             *dev =master->dev.parent;

 

         if(!spi_master_get(master))

                   returnNULL;

 

         spi= kzalloc(sizeof *spi, GFP_KERNEL);

         if(!spi) {

                   dev_err(dev,"cannot alloc spi_device\n");

                   spi_master_put(master);

                   returnNULL;

         }

 

         spi->master= master;

         spi->dev.parent= dev;

         spi->dev.bus= &spi_bus_type;

         spi->dev.release= spidev_release;

         device_initialize(&spi->dev);

         returnspi;

}

         在这个定义中将spi_bus_type和dev联系起来,不过此时还没有我们定义的设备信息,设备信息在接下来的赋值中完成。

         最后是spi_add_device,将设备信息提交。

int spi_add_device(struct spi_device *spi)

{

         staticDEFINE_MUTEX(spi_add_lock);

         structdevice *dev = spi->master->dev.parent;

         structdevice *d;

         intstatus;

 

……

         mutex_lock(&spi_add_lock);

 

         d= bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));

         ……

         status= spi_setup(spi);

         if(status < 0) {

                   dev_err(dev,"can't setup %s, status %d\n",

                                     dev_name(&spi->dev),status);

                   gotodone;

         }

……

done:

         mutex_unlock(&spi_add_lock);

         returnstatus;

}

         最终完成将spi_bus_type与定义的device信息联系起来。由于本人才疏学浅,不正确的地方,恳求大牛指正,在此表示感谢!