知识点复习46 Java 垃圾回收03

吞吐量优先选择什么垃圾回收器?响应时间优先呢?

新生代 Parallel GC 回收器

新生代 Parallel GC 回收器与新生代 ParNew 回收器非常类似,其也是使用复制算法,都是多线程、独占式的收集器,也会导致 Stop-The-World。但其余 ParNew 回收器的一个重大不同是:其非常注重系统的吞吐量。

之所以说新生代 Parallel GC 回收器非常注重系统吞吐量,是因为其有一个自适应 GC 调节策略。我们可以使用 -XX:+UseAdaptiveSizePolicy 参数打开这个策略,在这个模式下,新生代的大小、Eden 和 Survivor 的比例、晋升老年代的对象年龄等参数都会被自动调节,已达到堆大小、吞吐量、停顿时间的平衡点。

二.公式简述:

响应时间优先的并发收集器,主要是保证系统的响应时间,减少垃圾收集时的停顿时间。适用于应用服务器、电信领域等。

1.ParNew收集器:

     ParNew收集器是Serial收集器的多线程版本,许多运行在Server模式下的虚拟机中首选的新生代收集器,除Serial外,只有它能与CMS收集器配合工作。

2.CMS收集器:

    CMS, 全称Concurrent Low Pause Collector,是jdk1.4后期版本开始引入的新gc算法,在jdk5和jdk6中得到了进一步改进,

它的主要适合场景是对响应时间的重要性需求 大于对吞吐量的要求,能够承受垃圾回收线程和应用线程共享处理器资源,

并且应用中存在比较多的长生命周期的对象的应用。CMS是用于对tenured generation的回收,也就是年老代的回收,目标是尽量减少应用的暂停时间,减少FullGC发生的几率,利用和应用程序线程并发的垃圾回收线程来 标记清除年老代。

 

CMS并非没有暂停,而是用两次短暂停来替代串行标记整理算法的长暂停,它的收集周期是这样:
    初始标记(CMS-initial-mark) -> 并发标记(CMS-concurrent-mark) -> 重新标记(CMS-remark) -> 并发清除(CMS-concurrent-sweep) ->并发重设状态等待下次CMS的触发(CMS-concurrent-reset)
    其中的13两个步骤需要暂停所有的应用程序线程的。第一次暂停从root对象开始标记存活的对象,这个阶段称为初始标记;第二次暂停是在并发标记之后,暂停所有应用程序线程,重新标记并发标记阶段遗漏的对象(在并发标记阶段结束后对象状态的更新导致)。第一次暂停会比较短,第二次暂停通常会比较长,并且remark这个阶段可以并行标记。

    而并发标记、并发清除、并发重设阶段的所谓并发,是指一个或者多个垃圾回收线程和应用程序线程并发地运行,垃圾回收线程不会暂停应用程序的执行,如果你有多于一个处理器,那么并发收集线程将与应用线程在不同的处理器上运行,显然,这样的开销就是会降低应用的吞吐量。Remark阶段的并行,是指暂停了所有应用程序后,启动一定数目的垃圾回收进程进行并行标记,此时的应用线程是暂停的

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

什么是内存泄漏?

知识点复习46 Java 垃圾回收03

内存泄漏:对象已经没有被应用程序使用,但是垃圾回收器没办法移除它们,因为还在被引用着。
在Java中,内存泄漏就是存在一些被分配的对象,这些对象有下面两个特点****,首先,这些对象是可达的,即在有向图中,存在通路可以与其相连;其次,这些对象是无用的,即程序以后不会再使用这些对象。如果对象满足这两个条件,这些对象就可以判定为Java中的内存泄漏,这些对象不会被GC所回收,然而它却占用内存。

常见内存泄漏情况

1. 静态集合类引起内存泄漏

像HashMap、Vector等的使用最容易出现内存泄露,这些静态变量的生命周期和应用程序一致,他们所引用的所有的对象Object也不能被释放,因为他们也将一直被Vector等引用着。

知识点复习46 Java 垃圾回收03

2. 监听器

在 java 编程中,我们都需要和监听器打交道,通常一个应用当中会用到很多监听器,我们会调用一个控件的诸如addXXXListener() 等方法来增加监听器,但往往在释放对象的时候却没有记住去删除这些监听器,从而增加了内存泄漏的机会。

3. 各种连接

比如数据库连接(dataSourse.getConnection()),网络连接(socket)和io连接,除非其显式的调用了其close() 方法将其连接关闭,否则是不会自动被GC 回收的。对于Resultset 和Statement 对象可以不进行显式回收,但Connection 一定要显式回收,因为Connection 在任何时候都无法自动回收,而Connection一旦回收,Resultset 和Statement 对象就会立即为NULL。但是如果使用连接池,情况就不一样了,除了要显式地关闭连接,还必须显式地关闭Resultset Statement 对象(关闭其中一个,另外一个也会关闭),否则就会造成大量的Statement 对象无法释放,从而引起内存泄漏。这种情况下一般都会在try 里面去的连接,在finally里面释放连接。

4、非静态内部类持有外部类引用

如果一个外部类的实例对象的方法返回了一个内部类的实例对象,这个内部类对象被长期引用了,即使那个外部类实例对象不再被使用,但由于内部类持有外部类的实例对象,这个外部类对象将不会被垃圾回收,这也会造成内存泄露。

5、改变哈希值,

当一个对象被存储进HashSet集合中以后,就不能修改这个对象中的那些参与计算哈希值的字段了,否则,对象修改后的哈希值与最初存储进HashSet集合中时的哈希值就不同了,在这种情况下,即使在contains方法使用该对象的当前引用作为的参数去HashSet集合中检索对象,也将返回找不到对象的结果,这也会导致无法从HashSet集合中单独删除当前对象,造成内存泄露 。

6. 单例模式

不正确使用单例模式是引起内存泄漏的一个常见问题,单例对象在初始化后将在 JVM 的整个生命周期中存在(以静态变量的方式),如果单例对象持有外部的引用,那么这个对象将不能被 JVM 正常回收,导致内存泄漏,考虑下面的例子:

4. 如何防止内存泄漏的发生?

在了解了引起内存泄漏的一些原因后,应该尽可能地避免和发现内存泄漏。

4.1 好的编码习惯

最基本的建议就是尽早释放无用对象的引用,大多数程序员在使用临时变量的时候,都是让引用变量在退出活动域后,自动设置为 null 。在使用这种方式时候,必须特别注意一些复杂的对象图,例如数组、列、树、图等,这些对象之间有相互引用关系较为复杂。对于这类对象,GC 回收它们一般效率较低。如果程序允许,尽早将不用的引用对象赋为null。另外建议几点:

在确认一个对象无用后,将其所有引用显式的置为null;

当类从 Jpanel 或 Jdialog 或其它容器类继承的时候,删除该对象之前不妨调用它的 removeall() 方法;在设一个引用变量为 null 值之前,应注意该引用变量指向的对象是否被监听,若有,要首先除去监听器,然后才可以赋空值;当对象是一个 Thread 的时候,删除该对象之前不妨调用它的
interrupt() 方法;内存检测过程中不仅要关注自己编写的类对象,同时也要关注一些基本类型的对象,例如:int[]、String、char[] 等等;如果有数据库连接,使用 try…finally 结构,在 finally 中关闭 Statement 对象和连接。

4.2 好的测试工具

在开发中不能完全避免内存泄漏,关键要在发现有内存泄漏的时候能用好的测试工具迅速定位问题的所在。市场上已有几种专业检查 Java 内存泄漏的工具,它们的基本工作原理大同小异,都是通过监测 Java 程序运行时,所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。开发人员将根据这些信息判断程序是否有内存泄漏问题。这些工具包括 Optimizeit Profiler、JProbe Profiler、JinSight、Rational 公司的 Purify 等。

4.3 注意像 HashMap 、ArrayList 的集合对象

特别注意一些像 HashMap 、ArrayList 的集合对象,它们经常会引发内存泄漏。当它们被声明为 static 时,它们的生命周期就会和应用程序一样长。

4.4 注意 事件监听 和 回调函数

特别注意 事件监听 和 回调函数 。当一个监听器在使用的时候被注册,但不再使用之后却未被反注册。

“如果一个类自己管理内存,那开发人员就得小心内存泄漏问题了。” 通常一些成员变量引用其他对象,初始化的时候需要置空。