测试计划和测试用例的基本方法

1. 测试用例的概念和作用

1.1. 引言
对一个测试工程师来说,测试用例的设计编写是一项必须掌握的能力,但有效的设计和熟练的编写测试用例却是一个十分复杂的技术,测试用例编写者不仅要掌握软件测试技术和流程,而且要对整个软件不管从业务,还是对软件的设计、程序模块的结构、功能规格说明等都要有透彻的理解。
测试的设计方法不是单独存在的,具体到每个测试项目里都有很多种方法,每种类型都有各自的特点。
1.2. 测试用例的定义:
1.1.1. 什么是测试用例?

测试用例是执行测试的依据,把测试系统的操作步骤用文档的形式描述出来

(1)测试用例是为达到最佳的测试效果或高效的揭露隐藏的错误,而精心设计的少量测试数据,包括测试输入、执行条件和预期的结果,实际结果
(2)测试用例是执行的最小实体。
(3)测试用例是测试工作的指导,是软件测试的必须遵守的准则,更是软件测试质量稳定的根本保障
1.1.2. 测试用例的特征:
1、有效性:测试用例的能够被使用,且被不同人员使用测试结果一致
2、可重复性:良好的测试用例具有重复使用的功能。(回归测试)
3、易组织性:好的测试用例会分门别类地提供给测试人员参考和使用(功能、性能、易用分类编号)
4、清晰、简洁:好的测试用例描述清晰,每一步都应有相应的作用,有很强的的针对性,不应出现一些无用的操作步骤。
5、可维护性:由于软件开发过程中需求变更等原因的影响,常常对测试用例进行修改、增加、删除等,以便测试用符合相应测试要求。

1.3. 编写测试用例的好处:
1.1.3. 测试用例的作用:

在开始实施测试之前设计好测试用例,可以避免盲目测试并提高测试效率。
测试用例的使用令软件测试的实施重点突出、目的明确。
在软件版本更新后只需修正少部分的测试用例便可展开测试工作,降低工作强度、缩短项目周期。
检验软件是否满足客户需求、体现一个测试人员的工作量、展现测试用例的设计思路

1.4. 测试用例的4个特性
代表性:能够代表并覆盖各种合理的和不合理、合法的和不合法的、边界的和越界的以及极限的输入数据、操作等。
针对性:对程序中的可能存在的错误有针对性地测试
可判定性:测试执行结果的正确性是可判定的,每一个测试用例都应有相应的期望结果
可重现性:对同样的测试用例,系统的执行结果应当是相同的。

1.5. 测试用例通常包括以下几个组成元素:
用例编号、测试模块、用例标题、用例级别、测试环境、测试输入、执行操作、预期结果,实际结果….
测试计划和测试用例的基本方法
测试用例示例
测试计划和测试用例的基本方法

2. 编写测试用例的基本方法

2.1. 等价类划分法

应用场景:多用于输入框
1.1.4. 概念
有效,无效
等价类划分是指分步骤地把海量(无限)的测试用例集减得很小,但过程同样有效。
等价类 :何为等价类,某个输入域的集合,在这个集合中每个输入条件都是等效的。
一般可分为有效等价类和无效等价类

比如:一个青少年考试的分数(备注13-17岁为青少年)
假设青少年年龄为x,13<=x<=17,数学成绩为y:0<=y<=100
那么年龄按照等价类划分可分为x<13,13<=x<=17,x>17,有效等价类是13<=x<=17,无效等价类是x<13,x>17
数学成绩按照等价类划分可分为y<0,0<=y<=100,y>100,有效等价类是0<=y<=100,无效等价类是y<0,y>100

1.1.5. 示例
计算两个1~100之间整数的和。
如果要进行完全测试,一共要设计多少个测试用例呢?
加数1有1~100共计100个取值,加数2也有1~100共计100个取值,所以他们之间的组合就有100*100=10000种组合可能,但这只是测试了正常范围内的取值。如果用户输入的数据不在1~100之间呢,穷举测试肯定不可能的。由此引入了等价类划分思想。
等价类划分为:
有效等价类:指符合《需求规格说明书》,输入合理的数据集合
无效等价类:指不符合《需求规格说明书》,输入不合理的数据集合

我们将输入域分成了一个有效等价类(1~100)和两个无效等价类(<1,>100),并为每一个等价类进行编号,然后我们就可以从每一个等价类中选取一个代表性的数据来测试,设计如下表所示的测试用
测试计划和测试用例的基本方法
测试计划和测试用例的基本方法

2.2. 边界值法

一般边界值分析是因为程序开发循环体时的取数可能会因为<,<=搞错。
比如下面代码
  for(int i = 0;i <100; i ++)
{
  int j = i+1;
  System.out.println("循环第“+j+“次”)//循环地做某件事情
}
  这里的程序是循环了100次,所以会做100次;
  如果程序员不小心,把i <100写成i <= 100,则多循环添加一次,这时候边界值检查是一个很好的测试方法。
比如:在一个系统中,填写一个多少岁的青少年考了多少分(假设成年人年龄为x,13<=x<=17,数学成绩为y:0<=y<=100
根据上面的等价类划分法我们可知,年龄的有效等价类是13<=x<=17,所以边界值就是12, 18
数学成绩的,有效等价类是0<=y<=100,所以边界值就是-1,0,100,101

对数据进行软件测试,就是在检查用户输入的信息、返回的结果以及中间计算结果是否正确。即使最简单的程序要处理的数据量也可能极大,使这些数据得以测试的技巧是,根据一些关键的原则进行等价类的划分,以合理减少测试用例,这些关键的原则是:边界条件,次边界条件、空值和无效数据。
1.1.7. 确定边界值的方法()
选取正好等于、刚刚大于或刚刚小于边界值作为测试数据

输入要求是1 ~ 100之间的整数,因此自然产生了1和100两个边界,我们在设计测试用例的时,要重点考虑这两个边界问题。
[1 100] 上点1 ,100 离点 0 101所属
(1,100) 上点 2,99 离点 1 ,100
(1,100] 上点 2,100 离点 1 ,101
测试计划和测试用例的基本方法注明:边界值不是从每个等价类中挑一个作为代表,而是把每个等价类的边界都进行测试。

**2.3. 因果图法

1.1.8. 概念:**
因果图法比较适合输条件比较多的情况,测试所有的输入条件的排列组合。所谓的原因就是输入,所谓的结果就是输出。
1.1.9. 因果图基本图形符号
恒等:若原因出现,则结果出现;若原因不出现,则结果不出现。
非(~):若原因出现,则结果不出现;若原因不出现,则结果出现。
或(∨):若几个原因中有一个出现,则结果出现;若几个原因都不出现,则结果不出现。
与(∧):若几个原因都出现,结果才出现;若其中有一个原因不出现,则结果不出现。

测试计划和测试用例的基本方法
1.1.10. 因果图的约束符号
E(互斥):表示两个原因不会同时成立,两个中最多有一个可能成立
I(包含):表示三个原因中至少有一个必须成立
O(惟一):表示两个原因中必须有一个,且仅有一个成立
R(要求):表示两个原因,a出现时,b也必须出现,a出现时,b不可能不出现
M(屏蔽):两个结果,a为1时,b必须是0,当a为0时,b值不定
测试计划和测试用例的基本方法
1.1.11. 因果图测试用例
例如:有一个处理单价为2.5元的盒装饮料的自动售货机软件。若投入2.5元硬币,按“可乐”、“啤酒”、或“奶茶”按钮,相应的饮料就送出来。若投入的是3元硬币,在送出饮料的同时退还5角硬币。

分析这一段说明,我们可列出原因和结果
原因(输入):
投入2.5元硬币;
投入3元;
按“可乐”按钮;
按“啤酒”按钮;
按“奶茶”按钮。
中间状态: ① 已投币;②已按钮
结果(输出):
退还5角硬币;
送出“可乐”饮料;
送出“啤酒”饮料;
送出“奶茶”饮料;
测试计划和测试用例的基本方法
判定表法
测试计划和测试用例的基本方法
测试计划和测试用例的基本方法

2.4. 场景法

1.1.12. 测试用例设计的思想
现在的软件几乎都是用事件触发来控制流程的,事件触发时的情景便形成了场景,而同一事件不同的触发顺序和处理结果就形成事件流。这种在软件设计方面的思想也可以引入到软件测试中,可以比较生动地描绘出事件触发时的情景,有利于测试设计者设计测试用例,同时使测试用例更容易理解和执行。
用例场景是通过描述流经用例的路径来确定的过程,
这个流经过程要从用例开始到结束遍历其中所有基本流和备选流。

测试计划和测试用例的基本方法
遵循上图中每个经过用例的可能路径,可以确定不同的用例场景。从基本流开始,再将基本流和备选流结合起来,可以确定以下用例场景:
测试计划和测试用例的基本方法
基本流和备选流的区别:
测试计划和测试用例的基本方法
1.1.13. 银行案例ATM:
个人标识号 (PIN=personal identification number ),用于保护智能卡免受误用的秘密标识代码。PIN 与密码类似,只有卡的所有者才知道该 PIN。只有拥有该智能卡并知道 PIN 的人才能使用该智能卡

测试计划和测试用例的基本方法
测试计划和测试用例的基本方法
第一次测试中,根据测试计划,我们需要核实提款用例已经正确地实施。此时尚未实施整个用例,只实施了下面的事件流:
基本流-提取预设金额(100 元、200元、500元、1000元)
备选流2 - ATM 内没有现金
备选流3 - ATM 内现金不足
备选流4 - PIN 有误
备选流5 - 帐户不存在/帐户类型有误
备选流6 - 帐面金额不足
测试计划和测试用例的基本方法
对于这7个场景中的每一个场景都需要确定测试用例。可以采用矩阵或决策表来确定和管理测试用例。
从确定执行用例场景所需的数据元素入手构建矩阵。然后,对于每个场景,至少要确定包含执行场景所需的适当条件的测试用例。
下面显示了一种通用格式,其中各行代表各个测试用例,而各列则代表测试用例的信息。
本示例中,对于每个测试用例,存在一个测试用例ID、条件(或说明)、测试用例中涉及的所有数据元素(作为输入或已经存在于数据库中)以及预期结果。
测试计划和测试用例的基本方法
测试计划和测试用例的基本方法

2.5. 错误推测法

错误猜测法是测试经验丰富的人喜欢使用的一种测试用例设计方法。
一般这种方法是基于经验和直觉推测程序中可能发送的各种错误,有针对性地设计。只能作为一种补充。

例如,测试手机终端的通话功能,可以设计各种通话失败的情况来补充测试用 例:

  1. 无SIM 卡插入时进行呼出(非紧急呼叫)
  2. 插入已欠费SIM卡进行呼出
  3. 射频器件损坏或无信号区域插入有效SIM卡呼出
  4. 网络正常,插入有效SIM卡,呼出无效号码(如1、888、333333、不输入任何号码等)
  5. 网络正常,插入有效SIM卡,使用“快速拨号”功能呼出设置无效号码的数字

技巧:最重要的是要思考和分析测试对象的各个方面,多参考以前发现的bug的相关数据,总结的经验,个人多考虑异常的情况、反面的情况、特殊的输入,以一个攻击者的态度对待程序,就能设计出比较完善的测试用例来。

2.6. 正交表法

正交实验法就是利用排列整齐的表 -正交表来对试验进行整体设计、综合比较、统计分析,实现通过少数的实验次数找到较好的生产条件,以达到最高生产工艺效果,这种试验设计法是从大量的试验点中挑选适量的具有代表性的点,利用已经造好的表格—正交表来安排试验并进行数据分析的方法。正交表能够在因素变化范围内均衡抽样,使每次试验都具有较强的代表性,由于正交表具备均衡分散的特点,保证了全面实验的某些要求,这些试验往往能够较好或更好的达到实验的目的。正交实验设计包括两部分内容:第一,是怎样安排实验;第二,是怎样分析实验结果。

应用场景:在一个界面中有多个控件,每个控件有多个取值,控件之间可以相互组合,不可能(也没有必要)为每一种组合编写一条用例,如何使用最少最优的组合进行测试。——正交排列法

判定表,因果图也是考虑控件组合,但是组合数量较少(一般不会超过20中)
公式:Ln(mk)
k是表的列数,表示控件的个数(因数个数)
m是每个控件的取值个数(因数水平)
n是表的行数,也就是需要测试组合的次数
正交表查询地址:https://www.york.ac.uk/depts/maths/tables/orthogonal.htm
正交排列法:http://support.sas.com/techsup/technote/ts723_Designs.txt
测试计划和测试用例的基本方法
测试计划和测试用例的基本方法
测试计划和测试用例的基本方法
测试计划和测试用例的基本方法
测试计划和测试用例的基本方法
正交表测试用例设计方法的特点是什么?
1、用最少的实验覆盖最多的操作,测试用例设计很少,效率高,但是很复杂;
2、对于基本的验证功能,以及二次集成引起的缺陷,一般都能找出来;但是更深的缺陷,更复杂的缺陷,还是无能为力的;
3、体的环境下,正交表一般都很难做的。大多数,只在系统测试的时候使用此方法。