一.特征提取与匹配(ORB)
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
int main ( int argc, char** argv )
cout<<"usage: feature_extraction img1 img2"<<endl;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR );
Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR );
std::vector<KeyPoint> keypoints_1, keypoints_2;
float angle; //特征点的方向,值为0~360,负值表示不使用
float response; //特征点的响应强度,代表了该点是特征点的程度,可以用于后续处理中特征点排序
Mat descriptors_1, descriptors_2;
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
// Ptr<FeatureDetector> detector = FeatureDetector::create(detector_name);
// Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create(descriptor_name);
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create ( "BruteForce-Hamming" );
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//-- 第一步:检测 Oriented FAST 角点位置
detector->detect ( img_1,keypoints_1 );
detector->detect ( img_2,keypoints_2 );
descriptor->compute ( img_1, keypoints_1, descriptors_1 );
descriptor->compute ( img_2, keypoints_2, descriptors_2 );
drawKeypoints( img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
//BFMatcher matcher ( NORM_HAMMING );
matcher->match ( descriptors_1, descriptors_2, matches );
int queryIdx; //此匹配对应的查询图像的特征描述子索引
int trainIdx; //此匹配对应的训练(模板)图像的特征描述子索引
float distance; //两个特征向量之间的欧氏距离,越小表明匹配度越高。
bool operator < (const DMatch &m) const;
匹配函数match (matches中保存着描述子之间的匹配关系)
BFMatcher bfmatcher(NORM_HAMMING);
bfmatcher.match(descriptors1, descriptors2, matches);
找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
double min_dist=10000, max_dist=0; //初始化
for ( int i = 0; i < descriptors_1.rows; i++ )
double dist = matches[i].distance;//汉明距离matches[i]
if ( dist < min_dist ) min_dist = dist;
if ( dist > max_dist ) max_dist = dist;
min_dist = min_element( matches.begin(), matches.end(), [](const DMatch& m1, const DMatch& m2) {return m1.distance<m2.distance;} )->distance;
max_dist = max_element( matches.begin(), matches.end(), [](const DMatch& m1, const DMatch& m2) {return m1.distance<m2.distance;} )->distance;
auto min_max = minmax_element(matches.begin(), matches.end(), [](const DMatch &m1, const DMatch &m2) { return m1.distance < m2.distance; });
double min_dist = min_max.first->distance;
double max_dist = min_max.second->distance;
printf ( "-- Max dist : %f \n", max_dist );
printf ( "-- Min dist : %f \n", min_dist );
//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
std::vector< DMatch > good_matches;
for ( int i = 0; i < descriptors_1.rows; i++ )
if ( matches[i].distance <= max ( 2*min_dist, 30.0 ) )
good_matches.push_back ( matches[i] );
drawMatches ( img_1, keypoints_1, img_2, keypoints_2, matches, img_match );//画匹配线
drawMatches ( img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch );
imshow ( "所有匹配点对", img_match );
imshow ( "优化后匹配点对", img_goodmatch );
/--------------------------------------------------------------------------------------------------------------------------------------------------------------------/
结果
特征点
所有匹配的点对
优化后匹配点对