机器学习之特征工程

1、特征工程是什么

特征工程就是一个把原始数据转变成特征的过程,这些特征可以很好的描述这些数据,并且利用它们建立的模型在未知数据上的表现性能可以达到最优(或者接近最佳性能)。从数学的角度来看,特征工程就是人工地去设计输入变量X。
其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。坊间常说:“数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已”。

2、特征工程和重要性

  • 特征越好,灵活性越强
  • 特征越好,构建的模型越简单
  • 特征越好,模型的性能越出色

3、特征工程思维导图

机器学习之特征工程

4、特征工程步骤

4.1、数据预处理

通过特征提取,我们能得到未经处理的特征,这时的特征可能有以下问题:
- 不属于同一量纲:即特征的规格不一样,不能够放在一起比较。无量纲化可以解决这一问题。
- 信息冗余:对于某些定量特征,其包含的有效信息为区间划分,例如学习成绩,假若只关心“及格”或不“及格”,那么需要将定量的考分,转换成“1”和“0”表示及格和未及格。二值化可以解决这一问题。
- 定性特征不能直接使用:某些机器学习算法和模型只能接受定量特征的输入,那么需要将定性特征转换为定量特征。最简单的方式是为每一种定性值指定一个定量值,但是这种方式过于灵活,增加了调参的工作。通常使用哑编码的方式将定性特征转换为定量特征:假设有N种定性值,则将这一个特征扩展为N种特征,当原始特征值为第i种定性值时,第i个扩展特征赋值为1,其他扩展特征赋值为0。哑编码的方式相比直接指定的方式,不用增加调参的工作,对于线性模型来说,使用哑编码后的特征可达到非线性的效果。
- 存在缺失值:缺失值需要补充。信息利用率低:不同的机器学习算法和模型对数据中信息的利用是不同的,之前提到在线性模型中,使用对定性特征哑编码可以达到非线性的效果。类似地,对定量变量多项式化,或者进行其他的转换,都能达到非线性的效果。

4.1.1、无量纲化

无量纲化使不同规格的数据转换到同一规格。常见的无量纲化方法有标准化和归一化。标准化的前提是特征值服从正态分布,标准化后,其转换成标准正态分布。归一化利用了边界值信息,将特征的取值区间缩放到某个特点的范围,例如[0, 1]等

4.1.2、对定量特征二值化

定量特征二值化的核心在于设定一个阈值,大于阈值的赋值为1,小于等于阈值的赋值为0

4.1.3、对定性特征哑编码
4.1.4、缺失值计算
4.1.5、数据变换

常见的数据变换有基于多项式的、基于指数函数的、基于对数函数的。

4.2、 特征选择Feature Selection

当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。通常来说,从两个方面考虑来选择特征:

  • 特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上没有差异,这个特征对于样本的区分并没有什么用。
  • 特征与目标的相关性:这点比较显见,与目标相关性高的特征,应当优选选择。除方差法外,本文介绍的其他方法均从相关性考虑。
    根据特征选择的形式又可以将特征选择方法分为3种:

  • Filter:过滤法,按照发散性或者相关性对各个特征进行评分,设定阈值或者待选择阈值的个数,选择特征。

  • Wrapper:包装法,根据目标函数(通常是预测效果评分),每次选择若干特征,或者排除若干特征。
  • Embedded:集成法,先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据系数从大到小选择特征。类似于Filter方法,但是是通过训练来确定特征的优劣。
4.2.1、Filter
  • 方差选择法
      使用方差选择法,先要计算各个特征的方差,然后根据阈值,选择方差大于阈值的特征。
  • 相关系数法
      使用相关系数法,先要计算各个特征对目标值的相关系数以及相关系数的P值。
  • 卡方检验
      经典的卡方检验是检验定性自变量对定性因变量的相关性。假设自变量有N种取值,因变量有M种取值,考虑自变量等于i且因变量等于j的样本频数的观察值与期望的差距,构建统计量
  • 互信息法
      经典的互信息也是评价定性自变量对定性因变量的相关性的
4.2.1、Wrapper
  • 递归特征消除法
      递归消除特征法使用一个基模型来进行多轮训练,每轮训练后,消除若干权值系数的特征,再基于新的特征集进行下一轮训练。
4.2.1、Embedded
  • 基于惩罚项的特征选择法
      使用带惩罚项的基模型,除了筛选出特征外,同时也进行了降维。
  • 基于树模型的特征选择法
      树模型中GBDT也可用来作为基模型进行特征选择

4.2、Feature Extraction(特征提取)

当特征选择完成后,可以直接训练模型了,但是可能由于特征矩阵过大,导致计算量大,训练时间长的问题,因此降低特征矩阵维度也是必不可少的。常见的降维方法除了以上提到的基于L1惩罚项的模型以外,另外还有主成分分析法(PCA)和线性判别分析(LDA),线性判别分析本身也是一个分类模型。PCA和LDA有很多的相似点,其本质是要将原始的样本映射到维度更低的样本空间中,但是PCA和LDA的映射目标不一样:PCA是为了让映射后的样本具有最大的发散性;而LDA是为了让映射后的样本有最好的分类性能。所以说PCA是一种无监督的降维方法,而LDA是一种有监督的降维方法。

4.3、特征构建 Feature Construction

特征构建指的是从原始数据中人工的构建新的特征。我们需要人工的创建它们。这需要我们花大量的时间去研究真实的数据样本,思考问题的潜在形式和数据结构,同时能够更好地应用到预测模型中。
特征构建需要很强的洞察力和分析能力,要求我们能够从原始数据中找出一些具有物理意义的特征。假设原始数据是表格数据,一般你可以使用混合属性或者组合属性来创建新的特征,或是分解或切分原有的特征来创建新的特征。

特征思维导图

机器学习之特征工程