《统计机器学习与凸优化》教程 PPT 下载
点击上方“逆锋起笔”,关注领取****
来源:专知(ID:Quan_Zhuanzhi)
统计机器学习和凸优化都是现代机器学习研究和实践的重要理论基础。今天给大家带来的是由 INRIA 的 Francis Bach 主讲的 246 页《统计机器学习与凸优化》教程。
震撼!AI WORLD 2018世界人工智能峰会开场视频
统计机器学习(Statistical Machine Learning)是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科。凸优化(convex optimization)是指一种比较特殊的优化,是指求取最小值的目标函数为凸函数的一类优化问题。两者都是现代机器学习研究和实践的重要理论基础。今天给大家带来的是由 INRIA 的 Francis Bach 主讲的 246 页《统计机器学习与凸优化》教程。
教程大纲:
介绍(Introduction)
凸优化的经典方法(Classical methods for convex optimization)
非光滑随机近似(Non-smooth stochastic approximation)
平滑的随机近似算法(Smooth stochastic approximation algorithms)
有限数据集(Finite data sets)
部分图示
领取PDF,免下载
关注下方公众号
回复统计机器学习与凸优化(建议复制)
????长按上方二维码 2 秒
回复「统计机器学习与凸优化」即可获取资料
为避免输错,建议复制
往期教程领取