一致性Hash(Consistent Hashing)原理剖析

https://blog.csdn.net/lihao21/article/details/54193868
https://blog.csdn.net/sparkliang/article/details/5279393 这个大神讲得超级详细,可以搞定和一致性hash相关的一切问题。

引入

在业务开发中,我们常把数据持久化到数据库中。如果需要读取这些数据,除了直接从数据库中读取外,为了减轻数据库的访问压力以及提高访问速度,我们更多地引入缓存来对数据进行存取。读取数据的过程一般为:

一致性Hash(Consistent Hashing)原理剖析
图1:加入缓存的数据读取过程

对于分布式缓存,不同机器上存储不同对象的数据。为了实现这些缓存机器的负载均衡,可以使用式子1来定位对象缓存的存储机器:

m = hash(o) mod n ——式子1

其中,o为对象的名称,n为机器的数量,m为机器的编号,hash为一hash函数。图2中的负载均衡器(load balancer)正是使用式子1来将客户端对不同对象的请求分派到不同的机器上执行,例如,对于对象o,经过式子1的计算,得到m的值为3,那么所有对对象o的读取和存储的请求都被发往机器3执行。

一致性Hash(Consistent Hashing)原理剖析
图2:如何利用Hash取模实现负载均衡

式子1在大部分时候都可以工作得很好,然而,当机器需要扩容或者机器出现宕机的情况下,事情就比较棘手了。
当机器扩容,需要增加一台缓存机器时,负载均衡器使用的式子变成:

m = hash(o) mod (n + 1) ——式子2

当机器宕机,机器数量减少一台时,负载均衡器使用的式子变成:

m = hash(o) mod (n - 1) ——式子3

我们以机器扩容的情况为例,说明简单的取模方法会导致什么问题。假设机器由3台变成4台,对象o1由式子1计算得到的m值为2,由式子2计算得到的m值却可能为0,1,2,3(一个 3t + 2的整数对4取模,其值可能为0,1,2,3,读者可以自行验证),大约有75%(3/4)的可能性出现缓存访问不命中的现象。随着机器集群规模的扩大,这个比例线性上升。当99台机器再加入1台机器时,不命中的概率是99%(99/100)。这样的结果显然是不能接受的,因为这会导致数据库访问的压力陡增,严重情况,还可能导致数据库宕机。

一致性hash算法正是为了解决此类问题的方法,它可以保证当机器增加或者减少时,对缓存访问命中的概率影响减至很小。下面我们来详细说一下一致性hash算法的具体过程。

一致性Hash环

一致性hash算法通过一个叫作一致性hash环的数据结构实现。这个环的起点是0,终点是2^32 - 1,并且起点与终点连接,环的中间的整数按逆时针分布,故这个环的整数分布范围是[0, 2^32-1],如下图3所示:

一致性Hash(Consistent Hashing)原理剖析
图3:一致性Hash环

将对象放置到Hash环

假设现在我们有4个对象,分别为o1,o2,o3,o4,使用hash函数计算这4个对象的hash值(范围为0 ~ 2^32-1):

hash(o1) = m1
hash(o2) = m2
hash(o3) = m3
hash(o4) = m4

把m1,m2,m3,m4这4个值放置到hash环上,得到如下图4:

一致性Hash(Consistent Hashing)原理剖析
图4:放置了对象的一致性Hash环

将机器放置到Hash环

使用同样的hash函数,我们将机器也放置到hash环上。假设我们有三台缓存机器,分别为 c1,c2,c3,使用hash函数计算这3台机器的hash值:

hash(c1) = t1
hash(c2) = t2
hash(c3) = t3

把t1,t2,t3 这3个值放置到hash环上,得到如下图5:

一致性Hash(Consistent Hashing)原理剖析
图5:放置了机器的一致性Hash环

为对象选择机器

将对象和机器都放置到同一个hash环后,在hash环上顺时针查找距离这个对象的hash值最近的机器,即是这个对象所属的机器。
例如,对于对象o2,顺序针找到最近的机器是c1,故机器c1会缓存对象o2。而机器c2则缓存o3,o4,机器c3则缓存对象o1。

一致性Hash(Consistent Hashing)原理剖析
图6:在一致性Hash环上为对象选择机器

处理机器增减的情况

对于线上的业务,增加或者减少一台机器的部署是常有的事情。
例如,增加机器c4的部署并将机器c4加入到hash环的机器c3与c2之间。这时,只有机器c3与c4之间的对象需要重新分配新的机器。对于我们的例子,只有对象o4被重新分配到了c4,其他对象仍在原有机器上。如图7所示:

一致性Hash(Consistent Hashing)原理剖析
图7:增加机器后的一致性Hash环的结构

如上文前面所述,使用简单的求模方法,当新添加机器后会导致大部分缓存失效的情况,使用一致性hash算法后这种情况则会得到大大的改善。前面提到3台机器变成4台机器后,缓存命中率只有25%(不命中率75%)。而使用一致性hash算法,理想情况下缓存命中率则有75%,而且,随着机器规模的增加,命中率会进一步提高,99台机器增加一台后,命中率达到99%,这大大减轻了增加缓存机器带来的数据库访问的压力。

再例如,将机器c1下线(当然,也有可能是机器c1宕机),这时,只有原有被分配到机器c1对象需要被重新分配到新的机器。对于我们的例子,只有对象o2被重新分配到机器c3,其他对象仍在原有机器上。如图8所示:

一致性Hash(Consistent Hashing)原理剖析
图8:减少机器后的一致性Hash环的结构

虚拟节点

上面提到的过程基本上就是一致性hash的基本原理了,不过还有一个小小的问题。新加入的机器c4只分担了机器c2的负载,机器c1与c3的负载并没有因为机器c4的加入而减少负载压力。如果4台机器的性能是一样的,那么这种结果并不是我们想要的。
为此,我们引入虚拟节点来解决负载不均衡的问题。
将每台物理机器虚拟为一组虚拟机器,将虚拟机器放置到hash环上,如果需要确定对象的机器,先确定对象的虚拟机器,再由虚拟机器确定物理机器。
说得有点复杂,其实过程也很简单。

还是使用上面的例子,假如开始时存在缓存机器c1,c2,c3,对于每个缓存机器,都有3个虚拟节点对应,其一致性hash环结构如图9所示:

一致性Hash(Consistent Hashing)原理剖析
图9:机器c1,c2,c3的一致性Hash环结构

假设对于对象o1,其对应的虚拟节点为c11,而虚拟节点c11对象缓存机器c1,故对象o1被分配到机器c1中。

新加入缓存机器c4,其对应的虚拟节点为c41,c42,c43,将这三个虚拟节点添加到hash环中,得到的hash环结构如图10所示:

一致性Hash(Consistent Hashing)原理剖析
图10:机器c1,c2,c3,c4的一致性Hash环结构

新加入的缓存机器c4对应一组虚拟节点c41,c42,c43,加入到hash环后,影响的虚拟节点包括c31,c22,c11(顺时针查找到第一个节点),而这3个虚拟节点分别对应机器c3,c2,c1。即新加入的一台机器,同时影响到原有的3台机器。理想情况下,新加入的机器平等地分担了原有机器的负载,这正是虚拟节点带来的好处。而且新加入机器c4后,只影响25%(1/4)对象分配,也就是说,命中率仍然有75%,这跟没有使用虚拟节点的一致性hash算法得到的结果是相同的。

总结

一致性hash算法解决了分布式环境下机器增加或者减少时,简单的取模运算无法获取较高命中率的问题。通过虚拟节点的使用,一致性hash算法可以均匀分担机器的负载,使得这一算法更具现实的意义。正因如此,一致性hash算法被广泛应用于分布式系统中。

参考资料

  1. https://en.wikipedia.org/wiki/Consistent_hashing

  2. https://www.codeproject.com/articles/56138/consistent-hashing

  3. 《大型网站技术架构——核心原理与安全分析》,李智慧著,电子工业出版社

例题

一致性Hash(Consistent Hashing)原理剖析

海量数据处理

海量数据处理策略之一—Hash映射 + Hash_map统计 + 堆/快速/归并排序。
所谓海量数据处理,就是基于海量数据的查找、统计、运算等操作。所谓海量数据,就是数据量太大,导致要么无法在较短时间内迅速解决,要么数据太大,导致无法一次性装入内存。从而导致传统的操作无法实现。

一、问题描述

海量日志数据,提取出某日访问百度次数最多的那个IP。

思路:由于数据集很大,我们的策略是先用哈希映射将海量数据集映射为适当数量的非海量数据集,这个非海量数据集的大小足够我们的计算机吃下。然后我们可用hash_map去对数据进行统计,最后根据统计数据采用堆/快速/归并排序等方式找出最值。

1.在这里步骤一即哈希映射是将海量数据的大文件分割成小文件,因为内存受限,计算机一口吃不下。

2.利用hash_map去对划分后的小文件进行频率统计.

3.统计完成后在利用排序算法找出访问频率最大值的IP
具体实现:理论上的2的32次方个IP,我们可以采用哈希映射的方法,比如将IP换成整数去对1000取模,取模的值将会落在集合[0…999]中,每个值对应着一个集合,于是将由1000个集合,我们把取模后得到这个值的IP追加划分到该集合中去。接下来就是对每个小IP集合文件利用hash_map进行频率统计,利用排序算法找出各个文件中的最大值,最后对这些所谓的最大值再找出真正的最大值。

二、为什么要用哈希映射
为了能在有限的计算机内存资源下处理海量大数据,我们必须通过某种机制将大文件映射为小文件,这种机制就是散列,他通常将数据均匀地散列到各个子文件中去,这种映射散列的方式叫做哈希函数,好的哈希函数通常还能将数据均匀分布减少冲突。

三、题目

题目:每一个ip访问百度,其ip地址都会被记录到后台日志文件中,假设一天的访问日志有100G,求出一天中访问百度次数最多的ip地址,可以使用的内存大小是1G。

首先,我们将文件分解成小文件,题目说可使用大小我们不能就恰恰分成100个文件,因为计算机上还有运行程序或存储其他必要的资源,为了方便计算,我们将数据分成大小为100M一个的文件,这样即分成1024个文件:[FILE 0……FILE1023],100M大小我们说是这么说,但实际上并不会很均匀,一个好的哈希函数会大概将数据均分分配到各个子文件中去。于是这样就解决了因为计算机内存有些而数据海量不能一次性读入计算机的问题。

然后,我们对小文件中的IP利用hash_map进行统计,求出每个文件中IP出现次数最大的值。

最后,对这1024个子文件中的IP出现次数最多的再来一轮IP次数出现最多的求法,即可求得整个海量数据下出现次数最多的IP。

第一部分、十道海量数据处理面试题

1、海量日志数据,提取出某日访问百度次数最多的那个IP。

首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。

或者如下阐述(雪域之鹰):
算法思想:分而治之+Hash
1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理;
2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)24值,把海量IP日志分别存储到1024个小文件中。这样,每个小文件最多包含4MB个IP地址;
3.对于每一个小文件,可以构建一个IP为key,出现次数为value的Hash map,同时记录当前出现次数最多的那个IP地址;
4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP;

2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。
假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G。

典型的Top K算法,还是在这篇文章里头有所阐述,详情请参见:十一、从头到尾彻底解析Hash表算法。

文中,给出的最终算法是:
第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计(之前写成了排序,特此订正。July、2011.04.27);
第二步、借助堆这个数据结构,找出Top K,时间复杂度为N‘logK。
即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比所以,我们最终的时间复杂度是:O(N) + N’*O(logK),(N为1000万,N’为300万)。ok,更多,详情,请参考原文。

或者:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。

3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。

方案:顺序读文件中,对于每个词x,取hash(x)P00,然后按照该值存到5000个小文件(记为x0,x1,…x4999)中。这样每个文件大概是200k左右。

如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。
对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100个词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。

4、有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。

还是典型的TOP K算法,解决方案如下:
方案1:
顺序读取10个文件,按照hash(query)的结果将query写入到另外10个文件(记为)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。

找一台内存在2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件(记为)。

对这10个文件进行归并排序(内排序与外排序相结合)。

方案2:
一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。

方案3:
与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapReduce),最后再进行合并。

5、 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?

方案1:可以估计每个文件安的大小为5G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。

遍历文件a,对每个url求取hash(url)00,然后根据所取得的值将url分别存储到1000个小文件(记为a0,a1,…,a999)中。这样每个小文件的大约为300M。

遍历文件b,采取和a相同的方式将url分别存储到1000小文件(记为b0,b1,…,b999)。这样处理后,所有可能相同的url都在对应的小文件(a0vsb0,a1vsb1,…,a999vsb999)中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。

求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。

Bloom filter日后会在本BLOG内详细阐述。

6、在2.5亿个整数中找出不重复的整数,注,内存不足以容纳这2.5亿个整数。

方案1:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^32 * 2 bit=1 GB内存,还可以接受。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。

方案2:也可采用与第1题类似的方法,进行划分小文件的方法。然后在小文件中找出不重复的整数,并排序。然后再进行归并,注意去除重复的元素。

7、腾讯面试题:给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?

与上第6题类似,我的第一反应时快速排序+二分查找。以下是其它更好的方法:
方案1:oo,申请512M的内存,一个bit位代表一个unsigned int值。读入40亿个数,设置相应的bit位,读入要查询的数,查看相应bit位是否为1,为1表示存在,为0表示不存在。

dizengrong:
方案2:这个问题在《编程珠玑》里有很好的描述,大家可以参考下面的思路,探讨一下:
又因为2^32为40亿多,所以给定一个数可能在,也可能不在其中;
这里我们把40亿个数中的每一个用32位的二进制来表示
假设这40亿个数开始放在一个文件中。

然后将这40亿个数分成两类:
1.最高位为0
2.最高位为1
并将这两类分别写入到两个文件中,其中一个文件中数的个数<=20亿,而另一个>=20亿(这相当于折半了);
与要查找的数的最高位比较并接着进入相应的文件再查找

再然后把这个文件为又分成两类:
1.次最高位为0
2.次最高位为1

并将这两类分别写入到两个文件中,其中一个文件中数的个数<=10亿,而另一个>=10亿(这相当于折半了);
与要查找的数的次最高位比较并接着进入相应的文件再查找。
…….
以此类推,就可以找到了,而且时间复杂度为O(logn),方案2完。

附:这里,再简单介绍下,位图方法:
使用位图法判断整形数组是否存在重复
判断集合中存在重复是常见编程任务之一,当集合中数据量比较大时我们通常希望少进行几次扫描,这时双重循环法就不可取了。

位图法比较适合于这种情况,它的做法是按照集合中最大元素max创建一个长度为max+1的新数组,然后再次扫描原数组,遇到几就给新数组的第几位置上1,如遇到5就给新数组的第六个元素置1,这样下次再遇到5想置位时发现新数组的第六个元素已经是1了,这说明这次的数据肯定和以前的数据存在着重复。这种给新数组初始化时置零其后置一的做法类似于位图的处理方法故称位图法。它的运算次数最坏的情况为2N。如果已知数组的最大值即能事先给新数组定长的话效率还能提高一倍。

引入

在业务开发中,我们常把数据持久化到数据库中。如果需要读取这些数据,除了直接从数据库中读取外,为了减轻数据库的访问压力以及提高访问速度,我们更多地引入缓存来对数据进行存取。读取数据的过程一般为:

一致性Hash(Consistent Hashing)原理剖析
图1:加入缓存的数据读取过程

对于分布式缓存,不同机器上存储不同对象的数据。为了实现这些缓存机器的负载均衡,可以使用式子1来定位对象缓存的存储机器:

m = hash(o) mod n ——式子1

其中,o为对象的名称,n为机器的数量,m为机器的编号,hash为一hash函数。图2中的负载均衡器(load balancer)正是使用式子1来将客户端对不同对象的请求分派到不同的机器上执行,例如,对于对象o,经过式子1的计算,得到m的值为3,那么所有对对象o的读取和存储的请求都被发往机器3执行。

一致性Hash(Consistent Hashing)原理剖析
图2:如何利用Hash取模实现负载均衡

式子1在大部分时候都可以工作得很好,然而,当机器需要扩容或者机器出现宕机的情况下,事情就比较棘手了。
当机器扩容,需要增加一台缓存机器时,负载均衡器使用的式子变成:

m = hash(o) mod (n + 1) ——式子2

当机器宕机,机器数量减少一台时,负载均衡器使用的式子变成:

m = hash(o) mod (n - 1) ——式子3

我们以机器扩容的情况为例,说明简单的取模方法会导致什么问题。假设机器由3台变成4台,对象o1由式子1计算得到的m值为2,由式子2计算得到的m值却可能为0,1,2,3(一个 3t + 2的整数对4取模,其值可能为0,1,2,3,读者可以自行验证),大约有75%(3/4)的可能性出现缓存访问不命中的现象。随着机器集群规模的扩大,这个比例线性上升。当99台机器再加入1台机器时,不命中的概率是99%(99/100)。这样的结果显然是不能接受的,因为这会导致数据库访问的压力陡增,严重情况,还可能导致数据库宕机。

一致性hash算法正是为了解决此类问题的方法,它可以保证当机器增加或者减少时,对缓存访问命中的概率影响减至很小。下面我们来详细说一下一致性hash算法的具体过程。

一致性Hash环

一致性hash算法通过一个叫作一致性hash环的数据结构实现。这个环的起点是0,终点是2^32 - 1,并且起点与终点连接,环的中间的整数按逆时针分布,故这个环的整数分布范围是[0, 2^32-1],如下图3所示:

一致性Hash(Consistent Hashing)原理剖析
图3:一致性Hash环

将对象放置到Hash环

假设现在我们有4个对象,分别为o1,o2,o3,o4,使用hash函数计算这4个对象的hash值(范围为0 ~ 2^32-1):

hash(o1) = m1
hash(o2) = m2
hash(o3) = m3
hash(o4) = m4

把m1,m2,m3,m4这4个值放置到hash环上,得到如下图4:

一致性Hash(Consistent Hashing)原理剖析
图4:放置了对象的一致性Hash环

将机器放置到Hash环

使用同样的hash函数,我们将机器也放置到hash环上。假设我们有三台缓存机器,分别为 c1,c2,c3,使用hash函数计算这3台机器的hash值:

hash(c1) = t1
hash(c2) = t2
hash(c3) = t3

把t1,t2,t3 这3个值放置到hash环上,得到如下图5:

一致性Hash(Consistent Hashing)原理剖析
图5:放置了机器的一致性Hash环

为对象选择机器

将对象和机器都放置到同一个hash环后,在hash环上顺时针查找距离这个对象的hash值最近的机器,即是这个对象所属的机器。
例如,对于对象o2,顺序针找到最近的机器是c1,故机器c1会缓存对象o2。而机器c2则缓存o3,o4,机器c3则缓存对象o1。

一致性Hash(Consistent Hashing)原理剖析
图6:在一致性Hash环上为对象选择机器

处理机器增减的情况

对于线上的业务,增加或者减少一台机器的部署是常有的事情。
例如,增加机器c4的部署并将机器c4加入到hash环的机器c3与c2之间。这时,只有机器c3与c4之间的对象需要重新分配新的机器。对于我们的例子,只有对象o4被重新分配到了c4,其他对象仍在原有机器上。如图7所示:

一致性Hash(Consistent Hashing)原理剖析
图7:增加机器后的一致性Hash环的结构

如上文前面所述,使用简单的求模方法,当新添加机器后会导致大部分缓存失效的情况,使用一致性hash算法后这种情况则会得到大大的改善。前面提到3台机器变成4台机器后,缓存命中率只有25%(不命中率75%)。而使用一致性hash算法,理想情况下缓存命中率则有75%,而且,随着机器规模的增加,命中率会进一步提高,99台机器增加一台后,命中率达到99%,这大大减轻了增加缓存机器带来的数据库访问的压力。

再例如,将机器c1下线(当然,也有可能是机器c1宕机),这时,只有原有被分配到机器c1对象需要被重新分配到新的机器。对于我们的例子,只有对象o2被重新分配到机器c3,其他对象仍在原有机器上。如图8所示:

一致性Hash(Consistent Hashing)原理剖析
图8:减少机器后的一致性Hash环的结构

虚拟节点

上面提到的过程基本上就是一致性hash的基本原理了,不过还有一个小小的问题。新加入的机器c4只分担了机器c2的负载,机器c1与c3的负载并没有因为机器c4的加入而减少负载压力。如果4台机器的性能是一样的,那么这种结果并不是我们想要的。
为此,我们引入虚拟节点来解决负载不均衡的问题。
将每台物理机器虚拟为一组虚拟机器,将虚拟机器放置到hash环上,如果需要确定对象的机器,先确定对象的虚拟机器,再由虚拟机器确定物理机器。
说得有点复杂,其实过程也很简单。

还是使用上面的例子,假如开始时存在缓存机器c1,c2,c3,对于每个缓存机器,都有3个虚拟节点对应,其一致性hash环结构如图9所示:

一致性Hash(Consistent Hashing)原理剖析
图9:机器c1,c2,c3的一致性Hash环结构

假设对于对象o1,其对应的虚拟节点为c11,而虚拟节点c11对象缓存机器c1,故对象o1被分配到机器c1中。

新加入缓存机器c4,其对应的虚拟节点为c41,c42,c43,将这三个虚拟节点添加到hash环中,得到的hash环结构如图10所示:

一致性Hash(Consistent Hashing)原理剖析
图10:机器c1,c2,c3,c4的一致性Hash环结构

新加入的缓存机器c4对应一组虚拟节点c41,c42,c43,加入到hash环后,影响的虚拟节点包括c31,c22,c11(顺时针查找到第一个节点),而这3个虚拟节点分别对应机器c3,c2,c1。即新加入的一台机器,同时影响到原有的3台机器。理想情况下,新加入的机器平等地分担了原有机器的负载,这正是虚拟节点带来的好处。而且新加入机器c4后,只影响25%(1/4)对象分配,也就是说,命中率仍然有75%,这跟没有使用虚拟节点的一致性hash算法得到的结果是相同的。

总结

一致性hash算法解决了分布式环境下机器增加或者减少时,简单的取模运算无法获取较高命中率的问题。通过虚拟节点的使用,一致性hash算法可以均匀分担机器的负载,使得这一算法更具现实的意义。正因如此,一致性hash算法被广泛应用于分布式系统中。

参考资料

  1. https://en.wikipedia.org/wiki/Consistent_hashing

  2. https://www.codeproject.com/articles/56138/consistent-hashing

  3. 《大型网站技术架构——核心原理与安全分析》,李智慧著,电子工业出版社