从0到1用java再造tcpip协议栈:架构重建,完整实现ping应用

在原先代码设计中,我们为了方便,喜欢在一个模块中组织数据包的协议头,然后将要发送的数据融合在一起,并调用网卡将数据发送出去,这种偷懒的做法将多种逻辑融合在一起。这种做法一旦遇到复杂的数据发送需求时,系统逻辑的复杂性会呈现出爆炸性的增长,最后超出我们的控制范围。

为了实现体系的层次化,将各种功能剥离成单独模块,实现系统的可理解性,我将体系结构改动为以下模式:

从0到1用java再造tcpip协议栈:架构重建,完整实现ping应用

从上图看,所有的应用实例,也就是调用网络协议,实现数据收发功能的应用都继承IApplication接口和继承Application类,其内容如下:

package Application;

import java.util.HashMap;

public interface IApplication {
    public  int getPort();
    public boolean isClosed(); 
    public  void handleData(HashMap<String, Object> data);
}

package Application;

import java.util.HashMap;

public class Application implements IApplication{
    protected  int port = 0;
    private boolean closed = false;
    
    public Application() {
    	ApplicationManager manager = ApplicationManager.getInstance();
    	manager.addApplication(this);
    }
    
	@Override
	public int getPort() {
		return port;
	}

	@Override
	public void handleData(HashMap<String, Object> data) {
		// TODO Auto-generated method stub
		
	}

	@Override
	public boolean isClosed() {
		
		return closed;
	}

}

所有应用对象都要导出getPort()接口,每个port对应唯一一个应用对象,如果数据包到达后,协议会根据port寻找应该接受数据的应用对象。应用对象全部接受ApplicationManager的管理,当网络协议部分有数据需要提交给对应的应用时,需要通过ApplicationManager查询相应应用对象,它的代码如下:

package Application;

import java.util.ArrayList;

public class ApplicationManager  {
	private static ArrayList<IApplication> application_list = new ArrayList<IApplication>();
	private static ApplicationManager instance = null;
	
	private  ApplicationManager() {
		
	}
	
	public static  ApplicationManager getInstance() {
		if (instance == null) {
			instance = new ApplicationManager();
		}
		
		return instance;
	}
	
	public static void addApplication(IApplication app) {
		application_list.add(app);
	}

	public IApplication getApplicationByPort(int port) {
		for (int i = 0; i < application_list.size(); i++) {
			IApplication app = application_list.get(i);
			if (app.getPort() == port) {
				return app;
			}
		}
		
		return null;
	}

}

实现网络协议的模块单独形成一个独立部分,实现具体网络协议的对象都继承统一的接口IProtocol:

package protocol;

import java.util.HashMap;

import jpcap.packet.Packet;

public interface IProtocol {
    public byte[] createHeader(HashMap<String, Object> headerInfo);
    public HashMap<String, Object> handlePacket(Packet packet);
}

所有协议对象都接受ProtocolManager的统一管理,当应用对象需要调用某个协议对象创建包头时,需要经过ProtocolManager获取相应对象,同时它是唯一一个从网卡接收数据的对象,当网卡把数据包传递给它后,它通过解析网络包的以太太包头,决定把数据包转交给对应的网络协议对象解析,它的代码如下:

package protocol;

import java.util.Arrays;
import java.util.HashMap;

import Application.ApplicationManager;
import Application.IApplication;
import datalinklayer.DataLinkLayer;
import jpcap.PacketReceiver;
import jpcap.packet.EthernetPacket;
import jpcap.packet.IPPacket;
import jpcap.packet.Packet;

public class ProtocolManager implements PacketReceiver{
	private static ProtocolManager instance = null;
	private static ARPProtocolLayer arpLayer = null;
	private static DataLinkLayer dataLinkInstance = null;
	private static HashMap<String , byte[] > ipToMacTable = null;
	private static HashMap<String, byte[]> dataWaitToSend = null;
	
	private static byte[] broadcast=new byte[]{(byte)255,(byte)255,(byte)255,(byte)255,(byte)255,(byte)255};
	private ProtocolManager() {}
	public static ProtocolManager getInstance() {
		if (instance == null) {
			instance = new ProtocolManager();
			dataLinkInstance = DataLinkLayer.getInstance();
			ipToMacTable = new HashMap<String, byte[]>();
			dataWaitToSend = new HashMap<String, byte[]>();
			dataLinkInstance.registerPacketReceiver(instance);
			arpLayer = new ARPProtocolLayer();
		}
		
		return instance;
	}
	
    public IProtocol getProtocol(String name) {
    	switch (name.toLowerCase()) {
    	case "icmp":
    		return new ICMPProtocolLayer();
    	case "ip":
    		return new IPProtocolLayer();
    	}
    	
    	return null;
    }
    
    public void sendData(byte[] data, byte[] ip) throws Exception {
    	/*
    	 * 发送数据前先检查给定ip的mac地址是否存在,如果没有则先让ARP协议获取mac地址
    	 */
    	byte[] mac = ipToMacTable.get(Arrays.toString(ip));
    	if (mac == null) {
    		HashMap<String, Object> headerInfo = new HashMap<String, Object>();
    		headerInfo.put("sender_ip", ip);
    		byte[] arpRequest = arpLayer.createHeader(headerInfo);
    		if (arpRequest == null) {
    			throw new Exception("Get mac adress header fail");
    		}
    		
    		dataLinkInstance.sendData(arpRequest, broadcast, EthernetPacket.ETHERTYPE_ARP);
    		//将要发送的数据存起,等待mac地址返回后再发送
    		dataWaitToSend.put(Arrays.toString(ip), data);
    	} else {
    		//如果mac地址已经存在则直接发送数据
    		dataLinkInstance.sendData(data, mac, IPPacket.IPPROTO_IP);
    	}
    }
    
	@Override
	public void receivePacket(Packet packet) {
		if (packet == null) {
			return;
		}
		
		//确保收到数据包是arp类型
		EthernetPacket etherHeader = (EthernetPacket)packet.datalink;
		/*
		 * 数据链路层在发送数据包时会添加一个802.3的以太网包头,格式如下
		 * 0-7字节:[0-6]Preamble , [7]start fo frame delimiter
		 * 8-22字节: [8-13] destination mac, [14-19]: source mac 
		 * 20-21字节: type
		 * type == 0x0806表示数据包是arp包, 0x0800表示IP包,0x8035是RARP包
		 */
		if (etherHeader.frametype == EthernetPacket.ETHERTYPE_ARP) {
			//调用ARP协议解析数据包
			ARPProtocolLayer arpLayer = new ARPProtocolLayer();
			HashMap<String, Object> info = arpLayer.handlePacket(packet);
			byte[] senderIP = (byte[])info.get("sender_ip");
			byte[] senderMac = (byte[])info.get("sender_mac");
			ipToMacTable.put(Arrays.toString(senderIP), senderMac);
			//一旦有mac地址更新后,查看缓存表是否有等待发送的数据
			sendWaitingData(senderIP);
		}
		
		//处理IP包头
		
		if (etherHeader.frametype == EthernetPacket.ETHERTYPE_IP) {
			handleIPPacket(packet);
		}
		
	}
	
	private void handleIPPacket(Packet packet) {
		IProtocol ipProtocol = new IPProtocolLayer();
		HashMap<String, Object> info = ipProtocol.handlePacket(packet);
		if (info == null) {
			return ;
		}
		
		byte protocol = 0;
		if (info.get("protocol") != null) {
			protocol = (byte)info.get("protocol");
			//设置下一层协议的头部
			packet.header = (byte[])info.get("header");
			System.out.println("receive packet with protocol: " + protocol);
		}
		if (protocol != 0) {
			switch(protocol) {
				case IPPacket.IPPROTO_ICMP:
					handleICMPPacket(packet);
					break;
				default:
					return;
			}
					
		}
	}
	
	private void handleICMPPacket(Packet packet) {
		IProtocol icmpProtocol = new ICMPProtocolLayer();
		HashMap<String, Object> headerInfo = icmpProtocol.handlePacket(packet);
		short identifier = (short)headerInfo.get("identifier");
		IApplication app = ApplicationManager.getInstance().getApplicationByPort(identifier);
		if (app != null && app.isClosed() != true) {
			app.handleData(headerInfo);
		}
	}
		
	
	private void sendWaitingData(byte[] destIP) {
		byte[] data = dataWaitToSend.get(Arrays.toString(destIP));
		byte[] mac = ipToMacTable.get(Arrays.toString(destIP));
		if (data != null && mac != null) {
			dataLinkInstance.sendData(data, mac, EthernetPacket.ETHERTYPE_IP);
		}
	}
}

从代码我们看到,一旦数据包到来时,它的receivePacket接口会被调用,它通过嗅探以太包头判断数据包应该提交给哪种网络协议,在代码中目前我们只实现了对两种网络数据包的处理,一种是ARP包,一种是IP包。

它也负责发送数据,当应用或者协议需要把数据包发送出去时,需要调用它的sendData接口。它会先检查接收者IP对应的mac地址是否在缓存表中,如果没有,它会调用ARPProtocolLayer对象,通过ARP协议获取给定IP的mac地址。然后再调用其他协议对象,结合获得的mac地址去发送数据。

如果接收到的数据包是IP包,它会调用IPProtocolLayer对象解析协议包头,根据解析后返回的字段采取下一步行动,IP包头下面往往会跟着其他协议,由于我们本节实现ICMP ping应用,因此在代码中它监控IP处理后接下来是否要走ICMP协议,这些逻辑都在接口handleIPPacket中实现。如果所有协议处理完毕,需要把数据提交给对应的应用时,它会通过ApplicationManager把数据提交过去,这个逻辑在handleICMPPacket调用中有实现。

接下来我们看看ping应用的实现:

package Application;

import java.nio.ByteBuffer;
import java.util.HashMap;
import java.util.Random;

import protocol.ICMPProtocolLayer;
import protocol.IProtocol;
import protocol.ProtocolManager;

public class PingApp extends Application{
	private int echo_times = 0;
	private short identifier = 0;
	private short sequence = 0;
	private byte[] destIP = null;
	/*
	 * times: 连续发送多少次数据包
	 * destIP: ping的对象
	 */
	public PingApp(int times, byte[] destIP ) {
	    if (times > 0) {
	    	echo_times = times;
	    } else {
	    	throw new IllegalArgumentException("ehoc times must > 0");
	    }
	    
	    Random rand = new Random();
	    identifier = (short) (rand.nextInt() & 0x0000FFFF);
	    this.destIP = destIP;
	    this.port = identifier;
	}
	
	public void startPing() {
		for (int i = 0; i < this.echo_times; i++) {
			try {
				byte[] packet = createPackage(null);
				ProtocolManager.getInstance().sendData(packet, destIP);
			} catch (Exception e) {
				// TODO Auto-generated catch block
				e.printStackTrace();
			}
			
		}
	}
	
	private byte[] createPackage(byte[] data) throws Exception {
		byte[] icmpEchoHeader = this.createICMPEchoHeader();
		if (icmpEchoHeader == null) {
			throw new Exception("ICMP Header create fail");
		}		
		byte[] ipHeader = this.createIP4Header(icmpEchoHeader.length);
		
		//分别构建ip包头和icmp echo包头后,将两个包头结合在一起
		byte[] packet  = new byte[icmpEchoHeader.length + ipHeader.length];
		ByteBuffer packetBuffer = ByteBuffer.wrap(packet);
		packetBuffer.put(ipHeader);
		packetBuffer.put(icmpEchoHeader);
		
		return packetBuffer.array();
 	}
	
	private byte[] createICMPEchoHeader() {
		IProtocol icmpProto = ProtocolManager.getInstance().getProtocol("icmp");
		if (icmpProto == null) {
			return null;
		}
		//构造icmp echo 包头
		HashMap<String, Object> headerInfo = new HashMap<String, Object>();
		headerInfo.put("header", "echo");
		headerInfo.put("identifier", identifier);
		headerInfo.put("sequence_number", sequence);
		sequence++;
		//附带当前时间
	    long time = System.currentTimeMillis();
	    ByteBuffer buffer = ByteBuffer.allocate(Long.BYTES);
	    buffer.putLong(time);
	    byte[] timeBuffer = buffer.array();
        headerInfo.put("data", timeBuffer);
		byte[] icmpEchoHeader = icmpProto.createHeader(headerInfo);
		
		return icmpEchoHeader;
	}
	
	private byte[] createIP4Header(int dataLength) {
		IProtocol ip4Proto = ProtocolManager.getInstance().getProtocol("ip");
		if (ip4Proto == null || dataLength <= 0) {
			return null;
		}
		//创建IP包头默认情况下只需要发送数据长度,下层协议号,接收方ip地址
		HashMap<String, Object> headerInfo = new HashMap<String, Object>();
		headerInfo.put("data_length", dataLength);
		ByteBuffer destIP = ByteBuffer.wrap(this.destIP);
		headerInfo.put("destination_ip", destIP.getInt());
		byte protocol = ICMPProtocolLayer.PROTOCL_ICMP;
		headerInfo.put("protocol", protocol);
		headerInfo.put("identification", (short)this.port);
		byte[] ipHeader = ip4Proto.createHeader(headerInfo);
		
		return ipHeader;
		
	}
	
	@Override
	public void handleData(HashMap<String, Object> data) {
		long time = System.currentTimeMillis();
		short sequence = (short)data.get("sequence");
		byte[] time_buf = (byte[])data.get("data");
		ByteBuffer buf = ByteBuffer.wrap(time_buf);
		long send_time = buf.getLong();
		System.out.println("receive reply for ping request " + sequence + "for  " + (time - send_time) / 1000 + "secs");
	}

}

它通过调用IPProtocoalLayer和ICMPProtocolLayer组装包头,以便发生ping数据包,它所做的工作就是组装出如下格式的数据包:

从0到1用java再造tcpip协议栈:架构重建,完整实现ping应用

从上图看,ping数据包分成两部分,一部分是上面的IP包头,它有20字节,第二部分是下面的ICMP header,有8字节,最后是payload,这部分由程序自己附带,收到ping包的对方会原封不动的把payload转发回来。在Ping应用实现中,我们附带的payload是当前数据包的组建时间,当下次接收到回应时,我们把这个时间拿到,再结合当前时间就可以知道数据传递的一个来回需要多久。

在ping应用中,createIP4Header调用IPProtocolLayer组装IP包头,createICMPEchoHeader调用ICMPProtocolLayer组装ICMP header。当数据包返回后,它的handleData被调用,它在该接口里对返回数据进行操作。我们看看IPProtocolLayer的实现:

package protocol;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.util.HashMap;

import datalinklayer.DataLinkLayer;
import jpcap.packet.Packet;
import utils.Utility;

public class IPProtocolLayer implements IProtocol{
	private static int ETHERNET_FRAME_HEADER_LENGTH = 14;
    private static byte IP_VERSION = 4;
    private static int CHECKSUM_OFFSET = 10;
    private static int HEADER_LENGTH_OFFSET = 0 + ETHERNET_FRAME_HEADER_LENGTH;
    private static int TOTAL_LENGTH_OFFSET = 2 + ETHERNET_FRAME_HEADER_LENGTH;
    private static int SOURCE_IP_OFFSET = 12 + ETHERNET_FRAME_HEADER_LENGTH;
    private static int DEST_IP_OFFSET = 16 + ETHERNET_FRAME_HEADER_LENGTH;
    private static int PROTOCOL_INDICATOR_OFFSET = 9 + ETHERNET_FRAME_HEADER_LENGTH;
    
	@Override
	public byte[] createHeader(HashMap<String, Object> headerInfo) {
		byte version = (byte) (IP_VERSION & 0x0F);
		byte internetHeaderLength = 5;
		if (headerInfo.get("internet_header_length") != null) {
			internetHeaderLength = (byte)headerInfo.get("internet_header_length");
		}
		byte[] buffer = new byte[internetHeaderLength * 4];
		ByteBuffer byteBuffer = ByteBuffer.wrap(buffer);
		byteBuffer.put((byte) (version << 4 | internetHeaderLength));
		byte b = byteBuffer.get(0);
		
		byte dscp = 0;
		if (headerInfo.get("dscp") != null) {
			dscp = (byte)headerInfo.get("dscp");
		}
		byte ecn = 0;
		if (headerInfo.get("ecn") != null) {
			ecn = (byte)headerInfo.get("ecn");
		}
		byteBuffer.put((byte)(dscp << 2 | ecn));
		
		if (headerInfo.get("data_length") == null) {
			return null;
		}
		/*
		 * 总长度等于IP数据包包头长度加上末尾option长度加上后续数据长度
		 */
		int optionLength = 0;
		byte[] options = null;
		
		if (headerInfo.get("options") != null) {
			options = (byte[])headerInfo.get("options");
			optionLength += options.length;
		}
		short totalLength = (short) ((int)headerInfo.get("data_length") + optionLength + internetHeaderLength*4);
		byteBuffer.order(ByteOrder.BIG_ENDIAN);
		byteBuffer.putShort(totalLength);
		
		short identification = 0;
		if (headerInfo.get("identification") != null) {
			identification = (short)headerInfo.get("identification");
		}
		byteBuffer.order(ByteOrder.BIG_ENDIAN);
		byteBuffer.putShort(identification);
		
		short flagAndOffset = 0;
		if (headerInfo.get("flag") != null) {
			flagAndOffset =  (short) (((short)headerInfo.get("flag")) << 13);
		}
		if (headerInfo.get("fragment_offset") != null) {
			flagAndOffset |= ((short)headerInfo.get("fragment_offset"));
		}
		byteBuffer.order(ByteOrder.BIG_ENDIAN);
		byteBuffer.putShort(flagAndOffset);
		
		byte timeToLive = 64;
		if (headerInfo.get("time_to_live") != null) {
			timeToLive = (byte)headerInfo.get("time_to_live");
		}
		byteBuffer.put(timeToLive);
		
		byte protocol = 0;
		if (headerInfo.get("protocol") == null) {
			return null;
		}
		protocol = (byte)headerInfo.get("protocol");
		byteBuffer.put(protocol);
		
		short checkSum = 0;
		byteBuffer.order(ByteOrder.BIG_ENDIAN);
		byteBuffer.putShort(checkSum);
		
		//设置source ip
		byte[] ipArr = DataLinkLayer.getInstance().deviceIPAddress();
		ByteBuffer ip = ByteBuffer.wrap(ipArr);
		int srcIP = ip.getInt();
		byteBuffer.order(ByteOrder.BIG_ENDIAN);
		byteBuffer.putInt(srcIP);
		
		int destIP = 0;
		if (headerInfo.get("destination_ip") == null) {
			return null;
		}
		byteBuffer.order(ByteOrder.BIG_ENDIAN);
		destIP = (int)headerInfo.get("destination_ip");
		byteBuffer.putInt(destIP);
		
		
		if (headerInfo.get("options") != null) {
			byteBuffer.put(options);
		}
		
		checkSum = (short) Utility.checksum(byteBuffer.array(), byteBuffer.array().length);
		byteBuffer.order(ByteOrder.BIG_ENDIAN);
		byteBuffer.putShort(CHECKSUM_OFFSET, checkSum);
		 
		return byteBuffer.array();
	}

	@Override
	public HashMap<String, Object> handlePacket(Packet packet) {
		/*
		 * 解析收到数据包的IP包头,暂时不做校验和检测,默认网络发送的数据包不会出错,
		 * 暂时忽略对option段的处理
		 */
		
	byte[] ip_data = new byte[packet.header.length +  packet.data.length];
	ByteBuffer buffer = ByteBuffer.wrap(ip_data);
	buffer.put(packet.header);
	buffer.put(packet.data);

	HashMap<String, Object> headerInfo = new HashMap<String, Object>();
		
	//获取发送者IP
	byte[] src_ip = new byte[4];
	buffer.position(SOURCE_IP_OFFSET);
	buffer.get(src_ip, 0, 4);
	headerInfo.put("source_ip", src_ip);
	//获取接受者IP
	byte[] dest_ip = new byte[4];
	buffer.position(DEST_IP_OFFSET);
	buffer.get(dest_ip, 0, 4);
	headerInfo.put("dest_ip", dest_ip);
	//确保接受者是我们自己
	byte[] ip = DataLinkLayer.getInstance().deviceIPAddress();
	for (int i = 0; i < ip.length; i++) {
		if (ip[i] != dest_ip[i]) {
			return null;
		}
	}
		

	//获得下一层协议编号
	buffer.position(0);
	byte protocol = buffer.get(PROTOCOL_INDICATOR_OFFSET);
	headerInfo.put("protocol", protocol);
	int k = 0;
	if (protocol == 1) {
			k = 2;
			System.out.println("receive protocol 2");
		}

	byte headerLength = buffer.get(HEADER_LENGTH_OFFSET);
	headerLength &= 0x0F;
	//*4得到包头字节长度
	headerLength *= 4; 
	short totalLength = buffer.getShort(TOTAL_LENGTH_OFFSET);
	int dataLength = totalLength - headerLength;;
	byte[] data = new byte[dataLength];
	buffer.position(headerLength + ETHERNET_FRAME_HEADER_LENGTH);
	buffer.get(data, 0, dataLength);
	headerInfo.put("header", data);
			
			
			
	return headerInfo;


		
	}

}

它的目的很简单,就是根据上图包头的字段组装协议包头,如果有对应的数据包抵达,它根据协议包头字段对数据进行解析。我们再看看ICMPProtocolLayer的实现:

package protocol;

import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;

import jpcap.PacketReceiver;
import jpcap.packet.EthernetPacket;
import jpcap.packet.Packet;

public class ICMPProtocolLayer implements IProtocol{
    public static byte PROTOCL_ICMP = 1;   
    private ArrayList<IProtocol> protocol_header_list = new ArrayList<IProtocol>();
    private Packet packet;
    
    public ICMPProtocolLayer() {
    	//增加icmp echo 协议包头创建对象
    	protocol_header_list.add(new ICMPEchoHeader());
    }
	//checkType针对的是IPV6
	
	private HashMap<String, Object> analyzeICMPMessage() {
	
		HashMap<String, Object> info = null;
	
		info = handleICMPInfoMsg(this.packet);
		
		return info;
	}
	
	private HashMap<String, Object> handleICMPInfoMsg(Packet packet) {
		for (int i = 0; i < protocol_header_list.size(); i++) {
			IProtocol handler = protocol_header_list.get(i);
			HashMap<String, Object> info = handler.handlePacket(packet);
			if (info != null) {
				return info;
			}
		}
		
		return null;
	}
	
	

	@Override
	public byte[] createHeader(HashMap<String, Object> headerInfo) {
		for (int i = 0; i < protocol_header_list.size(); i++) {
			byte[] buff = protocol_header_list.get(i).createHeader(headerInfo);
			if (buff != null) {
				return buff;
			}
		}
		
		return null;
	}

	@Override
	public HashMap<String, Object> handlePacket(Packet packet) {
		this.packet = packet;
	
		return analyzeICMPMessage();
	}

}

ICMPProtocolLayer 很简单,它只是一个框架,因为ICMP具体数据包的形式多样,因此我们依旧使用责任链模式把具体工作分发给具体对象,例如我们要组装ping数据包对应的echo包头,据需要下面具体的实现实例:

package protocol;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.util.HashMap;
import java.util.Random;

import jpcap.packet.Packet;
import utils.Utility;

public class ICMPEchoHeader implements IProtocol{
	private static int ICMP_EOCH_HEADER_LENGTH = 8;
	private static byte ICMP_ECHO_TYPE = 8;
	private static byte ICMP_ECHO_REPLY_TYPE = 0;
	private static short ICMP_ECHO_IDENTIFIER_OFFSET = 4;
	private static short ICMP_ECHO_SEQUENCE_NUM_OFFSET = 6;
	private static short ICMP_ECHO_OPTIONAL_DATA_OFFSET = 8;
	private static short ICMP_ECHO_ONLY_HEADER_LENGTH = 8;

	@Override
	public byte[] createHeader(HashMap<String, Object> headerInfo) {
		String headerName = (String)headerInfo.get("header");
		if (headerName != "echo" && headerName != "echo_reply") {
			return null;
		}
		
		int bufferLen = ICMP_EOCH_HEADER_LENGTH;
		int dataLen = ((byte[])headerInfo.get("data")).length;
		
		if (headerInfo.get("data") != null) {
			bufferLen += ((byte[])headerInfo.get("data")).length;
		}
		byte[] buffer = new byte[bufferLen ];
		ByteBuffer byteBuffer = ByteBuffer.wrap(buffer);
		
		byte type = ICMP_ECHO_TYPE;
		if (headerName == "echo_reply") {
			type = ICMP_ECHO_REPLY_TYPE;
		}
		byteBuffer.put(type);
		byte code = 0;
		byteBuffer.put(code);
		
		short checkSum = 0;
		byteBuffer.order(ByteOrder.BIG_ENDIAN);
		byteBuffer.putShort(checkSum);
		
		short identifier = 0;
		if (headerInfo.get("identifier") == null) {
			Random ran = new Random();
			identifier = (short) ran.nextInt();
			headerInfo.put("identifier", identifier);
		}
		identifier = (short) headerInfo.get("identifier");
		byteBuffer.order(ByteOrder.BIG_ENDIAN);
		byteBuffer.putShort(identifier);
		System.out.println("ICMP echo header, identifier: " + String.format("0x%08x", identifier));
		
		short sequenceNumber = 0;
		if (headerInfo.get("sequence_number") != null) {
			sequenceNumber = (short) headerInfo.get("sequence_number");
		}
		headerInfo.put("sequence_number", sequenceNumber);
		byteBuffer.order(ByteOrder.BIG_ENDIAN);
		byteBuffer.putShort(sequenceNumber);
		System.out.println("ICMP echo header, sequence: " + String.format("0x%08x", sequenceNumber));
		
		
		if (headerInfo.get("data") != null) {
			byte[] data = (byte[])headerInfo.get("data");
			
			byteBuffer.put(data, 0, data.length);
		}
		
		checkSum = (short) Utility.checksum(byteBuffer.array(), byteBuffer.array().length);
		byteBuffer.order(ByteOrder.BIG_ENDIAN);
		byteBuffer.putShort(2, checkSum);
		System.out.println("ICMP echo header, checksum: " + String.format("0x%08x", checkSum));
		
		return byteBuffer.array();
	}

	@Override
	public HashMap<String, Object> handlePacket(Packet packet) {
		ByteBuffer buffer = ByteBuffer.wrap(packet.header);
		if (buffer.get(0) != ICMP_ECHO_REPLY_TYPE) {
			return null;
		}
		
		HashMap<String, Object> header = new HashMap<String, Object>();
		header.put("identifier", buffer.getShort(ICMP_ECHO_IDENTIFIER_OFFSET));
		header.put("sequence", buffer.getShort(ICMP_ECHO_SEQUENCE_NUM_OFFSET));;
		if (packet.header.length > ICMP_ECHO_ONLY_HEADER_LENGTH) {
			
			header.put("data", packet.data);
		}
		return header;
	}

}

上面协议对象负责组装ping协议包头,如果ping数据包返回,它也会根据相应的包头字段进行解读,解读后获得的数据就会提交给对应的应用对象。更加详细的代码讲解和调试演示请观看视频。

上面代码运行后,情况如下:

从0到1用java再造tcpip协议栈:架构重建,完整实现ping应用

我们构造了一个ping数据包,发送给路由器,路由器收到后返回数据包给Ping应用,这一来回用时15秒,之所以那么久是因为我在代码中设置断点调试所致。

更详实的讲解以及抓包演示,请通过下面链接观看视频:
更详细的讲解和代码调试演示过程,请点击链接

更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号:
从0到1用java再造tcpip协议栈:架构重建,完整实现ping应用