并发编程基础介绍

并发编程基础介绍

学习并发编程最重要的就是要先了解进程的概念。进程从字面意思来看就是正在执行的一个过程,进程也可以说时正在运行的程序的一个抽象理解,程序仅仅只是一堆代码而已,而进程指的是程序的运行过程,同一个程序执行两次,那也是两个进程,负责执行任务的是CPU。

在计算机所有功能的实现也都是基于硬件来完成的,但是如果有我们人类直接操作硬件就会非常麻烦,所以经过多代先驱的智慧,形成了操作系统,而进程的概念也是来源于操作系统。

简单来说,操作系统就是一个协调、管理、控制计算机硬件资源和软件资源的一种控制程序。我们通过操作系统可以完成对计算机的统筹使用,它是存在于硬件与软件之间的,本质也是软件。

计算机中操作系统所处的位置:

并发编程基础介绍

 

操作系统的两大作用:

1、把复杂、丑陋的硬件操作都封装成美丽的接口

2、把进程对硬件的竞争变得有序(进程会争抢CPU的资源)

多道技术

多道技术最开始是源于第三代计算的发布,cpu在执行一个任务的过程中,若需要操作硬盘,则发送操作硬盘的指令,指令一旦发出,硬盘上的机械手臂滑动读取数据到内存中,这一段时间,cpu需要等待,时间可能很短,但对于cpu来说已经很长很长,长到可以让cpu做很多其他的任务,如果我们让cpu在这段时间内切换到去做其他的任务,这样cpu不就充分利用了吗。这正是多道技术产生的技术背景

多道技术:

多道技术中的多道指的是多个程序,多道技术的实现是为了解决多个程序竞争或者说共享同一个资源(比如cpu)的有序调度问题,解决方式即多路复用,多路复用分为时间上的复用和空间上的复用。

空间上的复用:将内存分为几部分,每个部分放入一个程序,这样,同一时间内存中就有了多道程序。

 

时间上的复用:当一个程序在等待I/O时,另一个程序可以使用cpu,如果内存中可以同时存放足够多的作业,则cpu的利用率可以接近100%,类似于我们小学数学所学的统筹方法。(操作系统采用了多道技术后,可以控制进程的切换,或者说进程之间去争抢cpu的执行权限。这种切换不仅会在一个进程遇到io时进行,一个进程占用cpu时间过长也会切换,或者说被操作系统夺走cpu的执行权限)

 

空间上的复用最大的问题是:程序之间的内存必须分割,这种分割需要在硬件层面实现,由操作系统控制。如果内存彼此不分割,则一个程序可以访问另外一个程序的内存,

首先丧失的是安全性,比如你的qq程序可以访问操作系统的内存,这意味着你的qq可以拿到操作系统的所有权限。

其次丧失的是稳定性,某个程序崩溃时有可能把别的程序的内存也给回收了,比方说把操作系统的内存给回收了,则操作系统崩溃

总结:

    1.产生背景:针对单核,实现并发
    ps:
    现在的主机一般是多核,那么每个核都会利用多道技术
    有4个cpu,运行于cpu1的某个程序遇到io阻塞,会等到io结束再重新调度,会被调度到4个
    cpu中的任意一个,具体由操作系统调度算法决定。
    
    2.空间上的复用:如内存中同时有多道程序
    3.时间上的复用:复用一个cpu的时间片
       强调:遇到io切,占用cpu时间过长也切,核心在于切之前将进程的状态保存下来,这样
            才能保证下次切换回来时,能基于上次切走的位置继续运行

多进程

并发与并行

无论是并行还是并发,在用户看来都是'同时'运行的,不管是进程还是线程,都只是一个任务而已,真是干活的是cpu,cpu来做这些任务,而一个cpu同一时刻只能执行一个任务

一 并发:是伪并行,即看起来是同时运行。单个cpu+多道技术就可以实现并发,(并行也属于并发)

二 并行:同时运行,只有具备多个cpu才能实现并行

 

        单核下,可以利用多道技术,多个核,每个核也都可以利用多道技术(多道技术是针对单核而言的

 

        有四个核,六个任务,这样同一时间有四个任务被执行,假设分别被分配给了cpu1,cpu2,cpu3,cpu4,

 

        一旦任务1遇到I/O就*中断执行,此时任务5就拿到cpu1的时间片去执行,这就是单核下的多道技术

 

        而一旦任务1的I/O结束了,操作系统会重新调用它(需知进程的调度、分配给哪个cpu运行,由操作系统说了算),可能被分配给四个cpu中的任意一个去执行

并发编程基础介绍

 

多道技术概念回顾:内存中同时存入多道(多个)程序,cpu从一个进程快速切换到另外一个,使每个进程各自运行几十或几百毫秒,这样,虽然在某一个瞬间,一个cpu只能执行一个任务,但在1秒内,cpu却可以运行多个进程,这就给人产生了并行的错觉,即伪并发,以此来区分多处理器操作系统的真正硬件并行(多个cpu共享同一个物理内存)