Java架构直通车——深入理解B+树

引入:AVL树和B树

AVL树

平衡二叉搜索树是基于二分法的策略提高数据的查找速度的二叉树的数据结构;平衡二叉搜索树的数据结构组装过程有以下规则:
(1)非叶子节点只能允许最多两个子节点存在。
(2)每一个非叶子节点数据分布规则为左边的子节点小当前节点的值,右边的子节点大于当前节点的值(这里值是基于自己的算法规则而定的,比如hash值);

Java架构直通车——深入理解B+树

平衡树的层级结构:因为平衡二叉树查询性能和树的层级(h高度)成反比,h值越小查询越快、为了保证树的结构左右两端数据大致平衡降低二叉树的查询难度一般会采用一种算法机制实现节点数据结构的平衡,实现了这种算法的有比如红黑树,使用平衡二叉树能保证数据的左右两边的节点层级相差不会大于1.,通过这样避免树形结构由于删除增加变成线性链表影响查询效率,保证数据平衡的情况下查找数据的速度近于二分法查找。

红黑树

红黑树是一种含有红黑结点并能自平衡的二叉查找树。它必须满足下面性质:

性质1:每个节点要么是黑色,要么是红色。
性质2:根节点是黑色。
性质3:每个叶子节点(NIL)是黑色。
性质4:每个红色结点的两个子结点一定都是黑色。
性质5:任意一结点到每个叶子结点的路径都包含数量相同的黑结点。

从性质5又可以推出:
性质5.1:如果一个结点存在黑子结点,那么该结点肯定有两个子结点

Java架构直通车——深入理解B+树
红黑树并不是一个完美平衡二叉查找树,从图1可以看到,根结点P的左子树显然比右子树高,但左子树和右子树的黑结点的层数是相等的,也即任意一个结点到到每个叶子结点的路径都包含数量相同的黑结点(性质5)。所以我们叫红黑树这种平衡为黑色完美平衡。

红黑树能够以O(log2(N))的时间复杂度进行搜索、插入、删除操作,具体操作方法参考30张图带你彻底理解红黑树????。此外,任何不平衡都会在3次旋转之内解决。这一点是AVL所不具备的。

B树(B-树)

B树和平衡二叉树稍有不同的是B树属于多叉树又名平衡多路查找树(查找路径不只两个)。B树的每个节点最多包含m个孩子,m称为b树的阶。

一个M阶的b树具有如下几个特征:

  • 定义任意非叶子结点最多只有M个儿子,且M>2;
  • 根结点的儿子数为[2, M];
  • 除根结点以外的非叶子结点的儿子数为[M/2, M],向上取整;
  • 非叶子结点的关键字个数=儿子数-1;
  • 所有叶子结点位于同一层;
  • k个关键字把节点拆成k+1段,分别指向k+1个儿子,同时满足查找树的大小关系。

Java架构直通车——深入理解B+树

  • B树的查询流程:

如上图我要从上图中找到E字母,查找流程如下

(1)获取根节点的关键字进行比较,当前根节点关键字为M,E<M(26个字母顺序),所以往找到指向左边的子节点(二分法规则,左小右大,左边放小于当前节点值的子节点、右边放大于当前节点值的子节点);

(2)拿到关键字D和G,D<E<G 所以直接找到D和G中间的节点;

(3)拿到E和F,因为E=E 所以直接返回关键字和指针信息(如果树结构里面没有包含所要查找的节点则返回null);

  • B树的插入节点流程:

定义一个5阶树(平衡5路查找树;),现在我们要把3、8、31、11、23、29、50、28 这些数字构建出一个5阶树出来;

遵循规则:

(1)节点拆分规则:当前是要组成一个5路查找树,那么此时m=5,关键字数必须<=5-1(这里关键字数>4就要进行节点拆分);

(2)排序规则:满足节点本身比左边节点大,比右边节点小的排序规则;

先插入 3、8、31、11
Java架构直通车——深入理解B+树

再插入23、29

Java架构直通车——深入理解B+树
再插入50、28
Java架构直通车——深入理解B+树

  • B树节点的删除

规则:

(1)节点合并规则:当前是要组成一个5路查找树,那么此时m=5,关键字数必须大于等于ceil(5/2)(这里关键字数<2就要进行节点合并);

(2)满足节点本身比左边节点大,比右边节点小的排序规则;

(3)关键字数小于二时先从子节点取,子节点没有符合条件时就向向父节点取,取中间值往父节点放;

Java架构直通车——深入理解B+树

数据库为什么不使用二叉树?

局部性原理与磁盘预读

由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,磁盘的存取速度往往是主存的几百分分之一,因此为了提高效率,要尽量减少磁盘I/O。为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。这样做的理论依据是计算机科学中著名的局部性原理:当一个数据被用到时,其附近的数据也通常会马上被使用。程序运行期间所需要的数据通常比较集中

由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率。预读的长度一般为页(page)的整倍数。

数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入

所以我们要减少IO次数,对于树来说,IO次数就是树的高度,而“矮胖”就是b树的特征之一,它的每个节点最多包含m个孩子,m称为b树的阶,m的大小取决于磁盘页的大小。(每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。)

为什么使用B+树(与B树的区别)

B+树是B树的一个升级版,相对于B树来说B+树更充分的利用了节点的空间,让查询速度更加稳定,其速度完全接近于二分法查找。

规则

(1)B+跟B树不同B+树的非叶子节点不保存关键字记录的指针,只进行数据索引,这样使得B+树每个非叶子节点所能保存的关键字大大增加;

(2)B+树叶子节点保存了父节点的所有关键字记录的指针,所有数据地址必须要到叶子节点才能获取到。所以每次数据查询的次数都一样

(3)B+树叶子节点的关键字从小到大有序排列,左边结尾数据都会保存右边节点开始数据的指针

Java架构直通车——深入理解B+树
特点
1、B+树的层级更少
b+树的中间节点不保存数据,所以磁盘页能容纳更多节点元素,更“矮胖”,查询速度也就更快。

2、B+树查询速度更稳定:
B+所有关键字数据地址都存在叶子节点上,所以每次查找的次数都相同所以查询速度要比B树更稳定;

3、B+树天然具备排序功能:
B+树所有的叶子节点数据构成了一个有序链表,在查询大小区间的数据时候更方便,数据紧密性很高,缓存的命中率也会比B树高。

4、B+树全节点遍历更快:
B+树遍历整棵树只需要遍历所有的叶子节点即可,而不需要像B树一样需要对每一层进行遍历,这有利于数据库做全表扫描。
另外对于范围查找来说,b+树只需向后遍历叶子节点链表即可。