理论背景
1.只读模块 (分数占比0%)
【实验目的】
-
掌握应用电路仿真软件Pspice/Multisim等对高频电容反馈型LC振荡器的仿真设计方法。
-
掌握高频电容反馈型LC振荡器的直流工作点、反馈系数和负载等变化时对其主要性能如振荡频率、输出电压幅度和起振时间等的影响。
2.只读模块 (分数占比0%)
【实验原理】
高频LC振荡器广泛应用于通信电子系统、射频测试测量仪器、医疗仪器和物体探测装置中,其本质是将直流供电电源的能量转换为交流输出信号,本身不需要外部激励就能自动地实现能量转换,一般由晶体管、选频回路、反馈电路等组成。选频电路采用LC谐振回路的振荡器称为LC振荡器。在通信系统中,LC振荡器可以产生发射机中的载波,或作为接收机的本地振荡器。常用的LC振荡器有电容反馈型和电感反馈型两种类型,其中,电容反馈型振荡器由于高频波形较好,应用更加广泛。
常见的电容反馈型LC振荡器有共基极和共发射极两种结构。共基极组成的典型电路如图1所示,其中L、C1和C2组成振荡回路,Rb1、Rb2为晶体管的直流偏置电阻,Re为发射极电阻,Cb、Cc分别是基极和集电极耦合电容,取值较大,RL为负载电阻。

该振荡器的振荡频率为
f0=2πLCΣ1≈2πLC1+C2C1C21
实际仿真时,由于考虑了晶体管结电容的影响,如集电结电容与C1并联,发射结电容与C2并联,实际电路的电容值要比理论计算值大,故振荡频率会低一些。
该振荡器的反馈系数为
F≈C1+C2C1
可见,若通过改变C1或C2来改变反馈系数F,振荡频率也将随之改变。
高频LC振荡器的设计涉及晶体管的选型、晶体管直流工作点的选择、振荡频率的计算、反馈系数的确定和输出信号幅度的调整等。
高频振荡器在选择晶体管时与高频小信号放大器类似,尽量选择特征频率fT较高(大于5~10倍的振荡频率)、结电容小一些的晶体管,同时要求晶体管的 b 值不能太小,否则不容易起振。
振荡器在起振时,晶体管需工作在放大状态,其发射结要导通。为了确保能够起振,需要有足够大的增益A,以满足AF > 1的振幅起振条件,F为反馈系数。起振后,振幅逐渐增大,达到稳定的平衡状态时,AF = 1。增益A的大小与晶体管的直流工作点和负载都相关,也关系到输出电压的幅值。
3.只读模块 (分数占比0%)
【实验内容】
用电路仿真软件Pspice/Multisim仿真设计一个高频电容反馈型LC振荡器,满足以下要求:
-
晶体管采用共基组态;
-
实现无目测失真的正弦波输出;
-
振荡频率在15~20MHz之间;
-
输出电压的幅值不小于2V;
-
晶体管的ICQ=2~4mA;
-
反馈系数F=0.2~0.5;
-
电源电压VCC为12V;
-
晶体管推荐采用Q2N2222,其β=255.9,特征频率fT≈398MHz。
参数设计
首先我们控制变量,让L1=1μH
之后由:f0=2πLCΣ1≈2πLC1+C2C1C21
可以估算出CΣ的数量级大概是10−10F
之后,由于F≈C1+C2C1,我们就限定C1:C2=1:2,这样F系数一定能满足要求。

静态工作点方面,我设计成:
元器件符号 |
值 |
R1 |
13KΩ |
R2 |
5KΩ |
Re |
1KΩ |
其他元器件主要是经验数据:
元器件符号 |
值 |
Cb |
10μF |
Cc |
10μF |
RL |
1kΩ |
直流工作点分析

直流偏置VB=R1+R2VCC⋅R2=3.3V
静态工作点
ICQ=2.598mA∈(2mA,4mA)
放大倍数
β=IBQICQ=14.60μA2.598mA=177.9
工作状态
VBE=3.281V−2.613V=0.668V
VCE=VCC−VE=9.387V>>Vsat=0.3V
因此可以确定是处于放大区
瞬态分析
参数 |
值 |
图片证明 |
幅值 |
4.67V |
图一 |
起振时间 |
1.3us |
图一 |
频率 |
15MHz |
图二 |
-
图一 
-
图二 傅里叶分析图 指数Y轴

-
图三 傅里叶分析图 普通Y轴

-
图三

这里说几个非常重要的细节,就是仿真的参数设计:

- Analysis type 分析方式 选择时域分析
- Run to time 仿真的总时间 选择大概5~10us左右就好 按自己构图的喜好调节
- Maximum step size 这里一般选择5ns为好
这里如果没有设置,你的波形就会是这个样子:

因此这个设置非常关键!
ICQ 对起振时间和电压幅度的影响
-
Re=1.5kΩ


ICQ=1.749mA
VCPP=2.71V
t起振时间=1.61us
-
Re=2kΩ


ICQ=1.320mA
VCPP=1.93V
t起振时间=1.83us
-
Re=2.5kΩ


ICQ=1.060mA
VCPP=1.49V
t起振时间=3.77us
对比以上数据,我们可以得到下表:

因此,在一定范围内,Re与VCPP和ICQ均呈负相关关系,同时与t起振时间呈现正相关关系。
回路电容C2,对起振时间、振荡频率的影响。
- 600pF
波形图 t起振时间=1.31us


傅里叶分析 频谱图 f0=14.0MHz
- 900pF t起振时间=1.57us


傅里叶分析 频谱图 f0=13.4MHz
- 1200pF
波形图 t起振时间=1.83us


傅里叶分析 频谱图 f0=13.2MHz
- 总结

由此可知,在一定范围内,
回路电容C2与起振时间t起振时间呈现正相关,而与振荡频率呈现负相关
又因为F=C1+C2C1,因此反馈系数F与起振时间t起振时间呈现负相关,而与振荡频率呈现正相关
负载电阻RL 对起振时间,输出电压幅值的影响
增大负载电阻RL,观测、记录输出电压的波形,并说明负载增大对起振时间、输出电压幅度的影响。
-
RL=1.1kΩ


VCPP=4.83V
t起振时间=1.3us
-
RL=1.2kΩ


VCPP=5.82V
t起振时间=1.23us
-
RL=1.3kΩ


VCPP=6.53V
t起振时间=1.16us
- 总结

因此,在一定范围内,RL与VCPP呈现正相关关系,同时与t起振时间呈现负相关关系
另外值得注意的是,当RL上升到一定程度,波形会发生削底失真。