电气器件系列十九:ptc与半导*冷片

ptc、加热丝、半导*冷片的比较

PTC 是一种发热材料,外形片状、且只能发热、优点价格便宜、耐高温 半导体发热片是一种特殊材料做成的高效发热片,即能发热又能制冷,效率高于PTC,同等功耗情况下温差制冷发热量大于PTC很多 无异味,但半导体最高耐温150度,还有是成本贵。

传统汽车空调制热主要利用发动机余热,新能源汽车的制热系统现在主要采用电加热来实现。对于传统汽车,由暖风水箱吸收发动机运行中产生的大量热量,再通过鼓风器和风道将暖风吹至车厢内,以实现供暖。这一方面给车厢提供了制热的效果,另一方面也降低了发动机运行的温度。对于新能源汽车,采用电加热设备制热,其中常用的是电动车温控器(PTC)加热器。PTC是一种直热式电阻材料,具有正温度敏感性,它的电阻随着温度的变化而急剧变化,外界温度降低,PTC的电阻也随之减少,发热量反而会增加。如果高于85℃,则PTC电阻变得较大,PTC会自动停止工作。热泵空调是目前较优的新能源汽车供暖技术。目前汽车空调供暖有两种方式:1)利用发动机产生的热量给车内供暖;2)加装电加热棒、加热片(PTC),产生暖风。新能源汽车采用电机取代发动机提供动力,电机余热非常少,从而无法采用前种方式。而后种加装加热片的方式则会消耗大量电能,对车辆续航里程产生很大影响。为兼顾供暖效果和续航里程,新能源汽车亟需新一代空调技术,而热泵空调是新能源汽车的相对较佳选择之一。热泵空调系统上限可降低三分之二电耗。热泵空调技术原理和制冷系统相似,主要由压缩机、蒸发器、节流元件、冷凝器构成,但互换了蒸发器和冷凝器的位置。热泵空调供暖技术更为巧妙,并非依靠电能制热,而是将车外热量“搬运”到车内,以提升车内温度:1)蒸发器吸收车外空气的热量;2)冷凝器将热量释放给车内空气,从而实现车外热量的向内传导。与加装加热芯子相比,热泵空调上限可降低三分之二电耗,缓解电动车的“里程焦虑”现状。

电气器件系列十九:ptc与半导*冷片

电气器件系列十九:ptc与半导*冷片

 

 

原理:

在原理上,半导*冷片是一个热传递的工具。当一块N型半导体材料和一块P型半导体材料联结成的热电偶对中有电流通过时,两端之间就会产生热量转移,热量就会从一端转移到另一端,从而产生温差形成冷热端。但是半导体自身存在电阻当电流经过半导体时就会产生热量,从而会影响热传递。而且两个极板之间的热量也会通过空气和半导体材料自身进行逆向热传递。当冷热端达到一定温差,这两种热传递的量相等时,就会达到一个平衡点,正逆向热传递相互抵消。此时冷热端的温度就不会继续发生变化。为了达到更低的温度,可以采取散热等方式降低热端的温度来实现。

风扇以及散热片的作用主要是为制冷片的热端散热。通常半导*冷片冷热端的温差可以达到40~65度之间,如果通过主动散热的方式来降低热端温度,那冷端温度也会相应的下降,从而达到更低的温度。

当一块N型半导体材料和一块P型半导体材料联结成电偶对时,在这个电路中接通直流电流后,就能产生能量的转移,电流由N型元件流向P型元件的接头吸收热量,成为冷端;由P型元件流向N型元件的接头释放热量,成为热端。吸热和放热的大小是通过电流的大小以及半导体材料N、P的元件对数来决定,以下三点是热电制冷的温差电效应。

塞贝克效应

珀尔帖效应

汤姆逊效应

 

半导*冷片的工作原理是基于帕尔帖原理,该效应是在1834年由J.A.C帕尔帖首先发现的,即利用当两种不同的导体A和B组成的电路且通有直流电时,在接头处除焦耳热以外还会释放出某种其它的热量,而另一个接头处则吸收热量,且帕尔帖效应所引起的这种现象是可逆的,改变电流方向时,放热和吸热的接头也随之改变,吸收和放出的热量与电流强度I[A]成正比,且与两种导体的性质及热端的温度有关,即:

电气器件系列十九:ptc与半导*冷片

πab称做导体A和B之间的相对帕尔帖系数 ,单位为[V], πab为正值时,表示吸热,反之为放热,由于吸放热是可逆的,所以πab=-πab。金属材料的帕尔帖效应比较微弱,而半导体材料则要强得多,因而得到实际应用的温差电制冷器件都是由半导体材料制成的

 

其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。

电气器件系列十九:ptc与半导*冷片

 

 

制冷片作为特种冷源,在技术应用上具有以下的优点和特点:

1、不需要任何制冷剂,可连续工作,没有污染源没有旋转部件,不会产生回转效应,没有滑动部件是一种固体片件,工作时没有震动、噪音、寿命长,安装容易。

2、半导*冷片具有两种功能,既能制冷,又能加热,制冷效率一般不高,但制热效率很高,永远大于1。因此使用一个片件就可以代替分立的加热系统和制冷系统。

3、半导*冷片是电流换能型片件,通过输入电流的控制,可实现高精度的温度控制,再加上温度检测和控制手段,很容易实现遥控、程控、计算机控制,便于组成自动控制系统

4、半导*冷片热惯性非常小,制冷制热时间很快,在热端散热良好冷端空载的情况下,通电不到一分钟,制冷片就能达到最大温差。

5、半导*冷片的反向使用就是温差发电,半导*冷片一般适用于中低温区发电。

6、半导*冷片的单个制冷元件对的功率很小,但组合成电堆,用同类型的电堆串、并联的方法组合成制冷系统的话,功率就可以做的很大,因此制冷功率可以做到几毫瓦到上万瓦的范围。

7、半导*冷片的温差范围,从正温90℃到负温度130℃都可以实现。

 

 

 

http://www.elecfans.com/baike/bandaoti/bandaotiqijian/201909031064319.html