DetNet: A Backbone network for Object Detection

目标检测专用backbone:
DetNet A Backbone network for Object Detection
论文:https://arxiv.org/abs/1804.06215
代码:https://github.com/guoruoqian/DetNet_pytorch

1、传统backbone的缺点:

(1)下采样率大,使得大物体检测边界模糊;
(2)小物体检测信息丢失。

2、改进

(1)增加P6层,stage4之后分辨率在16x下采样。
(2)采用空洞卷积,增加1x1卷积模块(实验证明在多级目标检测非常重要),如下图B:
DetNet: A Backbone network for Object Detection
(3)由于空洞卷积仍然耗时,stage5,stage6保持256channels,而传统backbone往往会翻倍。

3、带有FPN的总体网络结构:

为了对比resnet,stage4之前与resnet50一致。
DetNet: A Backbone network for Object Detection

4、结果展示和对比分析

DetNet: A Backbone network for Object Detection
DetNet: A Backbone network for Object Detection
DetNet: A Backbone network for Object Detection
DetNet: A Backbone network for Object Detection
测试1x1卷积连接:
DetNet: A Backbone network for Object Detection
测试detnet59和resnet预训练+扩张卷积(空洞卷积):
DetNet: A Backbone network for Object Detection
比较State of the Art:
DetNet: A Backbone network for Object Detection
DetNet: A Backbone network for Object Detection