曲面扰动理论之C2曲面的H2扩张

曲面扰动理论之C2曲面的H2扩张

我们在后续提到的窄带(narrow band)方法和迹方法(trace)的分析中,对解要求:

u~H2(γ) \widetilde{u} \in H^{2}(\gamma)
uH2(N(δ))δ12u~H2(γ) \|u\|_{H^{2}(\mathcal{N}(\delta))} \lesssim \delta^{\frac{1}{2}}\|\widetilde{u}\|_{H^{2}(\gamma)}

事实上,我们定义自然扩张
u(x)=u~(xd(x)d(x))xN(δ) u(\mathrm{x})=\tilde{u}(\mathrm{x}-d(\mathrm{x}) \nabla d(\mathrm{x})) \quad \forall \mathrm{x} \in \mathcal{N}(\delta)
可以使得上述估计成立。

问题在于,这里我们需要Pd\mathbf{P}_{d}C2C^2的,那么γ\gamma要是C3C^3的,这对曲面有了更高的要求。为了使得对于C2C^2曲面也有上述估计,我们需要借助C2C^2曲面的H2H^2扩张。下面来说明这个。

ε=cδδ2\varepsilon=c \delta \leq \frac{\delta}{2},使得
N(δ+2ε)N \mathcal{N}(\delta+2 \varepsilon) \subset \mathcal{N}
定义函数:
dˉε(x):=dρε(x)=Bεd(xy)ρε(y)dyxN(δ) \bar{d}_{\varepsilon}(\mathrm{x}):=d \star \rho_{\varepsilon}(\mathrm{x})=\int_{B_{\varepsilon}} d(\mathrm{x}-\mathrm{y}) \rho_{\varepsilon}(\mathrm{y}) d \mathrm{y} \quad \forall \mathrm{x} \in \mathcal{N}(\delta)
表示距离函数dd和支撑在单位球Bε:=B(0,ε)B_{\varepsilon}:=B(0, \varepsilon)上的光滑镜像对称软化函数ρε(x)\rho_{\varepsilon}(\mathbf{x})在单位球上做卷积。
γE\gamma_{E}表示其零水平集:
γε:={xN:dˉε(x)=0} \gamma_{\varepsilon}:=\left\{\mathrm{x} \in \mathcal{N}: \quad \bar{d}_{\varepsilon}(\mathrm{x})=0\right\}
dεd_{\varepsilon}表示γε\gamma_\varepsilon的距离函数。

首先,我们先不加证明地引用几个结论。

结论一:

曲面扰动理论之C2曲面的H2扩张这里的豪斯多夫距离定义为:
dH(X,Y)=max{supxXinfyϵYd(x,y),supyYinfxϵX(x,y)} d_{H}(X, Y)=\max \left\{\sup _{x \in X} i n f_{y \epsilon Y} d(x, y), \sup _{y \in Y} i n f_{x \epsilon X}(x, y)\right\}
这个引理实际上告诉我们的是,用卷积定义出来的dˉε\bar{d}_{\varepsilon}dd的某种“距离”(本身和一阶导)、dˉε\bar{d}_{\varepsilon}的二阶导数、二者的零水平集γ\gammaγε\gamma_\varepsilon的距离,三者都可以被距离函数的半范dW2|d|_{W_{\infty}^{2}}所控制。表示的是dˉε\bar{d}_{\varepsilon}的有界性质。

结论二:

 Lemma 26 (properties of dε). The function dεC(N(δ)) and satisfies dεW2(N(δ))+εdεW3(N(δ))dW2(N) Moreover, the following error estimates hold (ddε)L(N(δ))δdW2(N),1ddεL(N(δ))δ2dW2(N) \begin{array}{l}{ \text { Lemma }\left.26 \text { (properties of } d_{\varepsilon}\right) . \text { The function } d_{\varepsilon} \in C^{\infty}(\mathcal{N}(\delta)) \text { and satisfies }} \\ {\qquad \begin{aligned}\left\|d_{\varepsilon}\right\|_{W_{\infty}^{2}}(\mathcal{N}(\delta))+\varepsilon\left\|d_{\varepsilon}\right\|_{W_{\infty}^{3}}(\mathcal{N}(\delta)) & \lesssim|d|_{W_{\infty}^{2}(\mathcal{N})} \\ \text { Moreover, the following error estimates hold } \\\left\|\nabla\left(d-d_{\varepsilon}\right)\right\|_{L_{\infty}(\mathcal{N}(\delta))} & \lesssim \delta|d|_{W_{\infty}^{2}(\mathcal{N})}, \quad\left\|1-\nabla d \cdot \nabla d_{\varepsilon}\right\|_{L_{\infty}(\mathcal{N}(\delta))} \lesssim \delta^{2}|d|_{W_{\infty}^{2}(\mathcal{N})} \end{aligned}}\end{array}
这个性质本质上想告诉我们的是,γε\gamma_\varepsilon的距离函数dεd_\varepsilon及其导数被dW2|d|_{W_{\infty}^{2}}的控制关系。

结论三:

 Corollary 27 (property of Pε). The lift Pε belongs to C(N(δ)) and satisfies PεW2(N(δ))dW2(N) for suitable constants C1,C2 so that C1δεδ2 and C2εdW2(N)1 \begin{array}{l}{ \text { Corollary }\left.27 \text { (property of } P_{\varepsilon}\right) . \text { The lift } P_{\varepsilon} \text { belongs to } C^{\infty}(\mathcal{N}(\delta)) \text { and satisfies }} \\ {\qquad\left|\mathbf{P}_{\varepsilon}\right|_{W_{\infty}^{2}(\mathcal{N}(\delta))} \lesssim|d|_{W_{\infty}^{2}(\mathcal{N})}} \\ {\text { for suitable constants } C_{1}, C_{2} \text { so that } C_{1} \delta \leq \varepsilon \leq \frac{\delta}{2} \text { and } C_{2} \varepsilon|d|_{W_{\infty}^{2}(\mathcal{N})} \leq 1}\end{array}
这个推论告诉我们的是到γε\gamma_\varepsilon的投影算子(lift)Pε\mathbf{P}_\varepsilonW2W_{\infty}^{2}空间中半范被距离函数dd的在该空间中的半范控制。它是关于投影算子的界。

结论四:

 Proposition 28(H2 extension ). Let ε and δ be as in Corollary 27 (property of Pε) ,  and assume that εdW2(N)c for a sufficiently small constant c. If u~H2(γ), then uH2(N(δ)) and uH2(N(δ))δ12dW2(N)u~H2(γ) Moreover, the trace of u on γ coincides with u~, that is u an H2 extension of u~ .  \begin{array}{l}{ \text { Proposition }\left.28\left(H^{2} \text { extension }\right) . \text { Let } \varepsilon \text { and } \delta \text { be as in Corollary } 27 \text { (property of } \mathbf{P}_{\varepsilon}\right) \text { , }} \\ {\text { and assume that } \varepsilon|d|_{W_{\infty}^{2}(\mathcal{N})} \leq c \text { for a sufficiently small constant } c . \text { If } \widetilde{u} \in H^{2}(\gamma),} \\ {\text { then } u \in H^{2}(\mathcal{N}(\delta)) \text { and }} \\ {\qquad\|u\|_{H^{2}(\mathcal{N}(\delta))} \lesssim \delta^{\frac{1}{2}}|d|_{W_{\infty}^{2}(\mathcal{N})}\|\widetilde{u}\|_{H^{2}(\gamma)}} \\ {\text { Moreover, the trace of } u \text { on } \gamma \text { coincides with } \widetilde{u}, \text { that is } u \text { an } H^{2} \text { extension of } \widetilde{u} \text { . }}\end{array}
这里的uuu~\tilde u的一种扩张。它定义为uεu_\varepsilon的自然扩张,即:
u(x):=uε(xdε(x)dε(x))xN(δ) u(\mathrm{x}):=u_{\varepsilon}\left(\mathrm{x}-d_{\varepsilon}(\mathrm{x}) \nabla d_{\varepsilon}(\mathrm{x})\right) \quad \forall \mathrm{x} \in \mathcal{N}(\delta)
那么uεu_\varepsilon的值是多少呢?它定义为γ\gamma上的到γε\gamma_\varepsilon投影逆的u~\tilde u值,即:
uε=u~Qε u_{\varepsilon}=\widetilde{u} \circ \mathbf{Q}_{\varepsilon} Qε=Pε1:γεγ \mathbf{Q}_{\varepsilon}=\mathbf{P}_{\varepsilon}^{-1}: \gamma_{\varepsilon} \rightarrow \gamma
这样定义的扩张uu,就能满足它在领域上的H2H^2范数被曲面上的H2H^2范数控制。也就回到了,我们最开始想要得到东西。

结论五:

 Lemma 29 (PDE satisfied by uε). If γ is closed and of class C2, then γε is also  closed and of class C, and the extension uε=u~Qε satisfies on γεμ~εdivγε(1μ~εA~εγεuε)=f~ε where A~ε:=(IdεD2dε)Π(IdεD2dε)Qε,Π stands for the orthogonal projection Π=(Idd) on γ and μ~ε:=qεqQε reads μ~ε=det(IdεD2dε)(ddε)Qε \begin{array}{l}{ \text { Lemma }\left.29 \text { (PDE satisfied by } u_{\varepsilon}\right) . \text { If } \gamma \text { is closed and of class } C^{2}, \text { then } \gamma_{\varepsilon} \text { is also }} \\ {\text { closed and of class } C^{\infty}, \text { and the extension } u_{\varepsilon}=\widetilde{u} \circ \mathrm{Q}_{\varepsilon} \text { satisfies on } \gamma_{\varepsilon}} \\ {\qquad-\widetilde{\mu}_{\varepsilon} \operatorname{div}_{\gamma_{\varepsilon}}\left(\frac{1}{\tilde{\mu}_{\varepsilon}} \widetilde{\mathbf{A}}_{\varepsilon} \nabla_{\gamma_{\varepsilon}} u_{\varepsilon}\right)=\tilde{f}_{\varepsilon}} \\ {\text { where } \tilde{\mathbf{A}}_{\varepsilon}:=\left(\mathbf{I}-d_{\varepsilon} D^{2} d_{\varepsilon}\right) \Pi\left(\mathbf{I}-d_{\varepsilon} D^{2} d_{\varepsilon}\right) \circ \mathbf{Q}_{\varepsilon}, \Pi \text { stands for the orthogonal projection }} \\ {\Pi=(\mathbf{I}-\nabla d \otimes \nabla d) \text { on } \gamma \text { and } \widetilde{\mu}_{\varepsilon}:=\frac{q_{\varepsilon}}{q \circ Q_{\varepsilon}} \text { reads }} \\ {\widetilde{\mu}_{\varepsilon}=\operatorname{det}\left(\mathbf{I}-d_{\varepsilon} D^{2} d_{\varepsilon}\right)\left(\nabla d \cdot \nabla d_{\varepsilon}\right) \circ \mathbf{Q}_{\varepsilon}}\end{array}
这里假设u~\tilde uγ\gamma上泊松方程的解,f~\tilde f是相对应的右端项。这里同样把f~ε\tilde f_\varepsilon投影到了γϵ\gamma_\epsilon上:
fε~:=f~Qε \widetilde{f_{\varepsilon}}:=\widetilde{f} \circ \mathbf{Q}_{\varepsilon}
这个引理告诉我们,曲面γ\gamma上的泊松方程到γϵ\gamma_\epsilon上仍然是满足的,只不过是方程中加了一些“系数”。

 Proposition 30 (PDE satisfied by u) . Let ε and δ be as in Corollary 27 (property  of Pε). The extension uH2(N(δ)) of u~ of Proposition 28 satisfies the PDE1μεdiv(μεBεu)=fε in N(δ)1μεdiv(μεBε)1ΠεAεΠε(IdεD2dε)1με:=1μ~εPεdet(IdεD2dε)and μ~ε is defined in Lemma 29 \begin{array}{l}{ \text { Proposition 30 (PDE satisfied by }u) \text { . Let } \varepsilon \text { and } \delta \text { be as in Corollary } 27 \text { (property }} \\ { \text { of }\left.\mathbf{P}_{\varepsilon}\right) . \text { The extension } u \in H^{2}(\mathcal{N}(\delta)) \text { of } \widetilde{u} \text { of Proposition } 28 \text { satisfies the } P D E} \\ {\qquad \begin{aligned}-\frac{1}{\mu_{\varepsilon}} \operatorname{div}\left(\mu_{\varepsilon} \mathbf{B}_{\varepsilon} \nabla u\right)=f_{\varepsilon} & \text { in } \quad \mathcal{N}(\delta) \\-\frac{1}{\mu_{\varepsilon}} \operatorname{div}\left(\mu_{\varepsilon} \mathbf{B}_{\varepsilon}\right)^{-1} \Pi_{\varepsilon} \mathbf{A}_{\varepsilon} \Pi_{\varepsilon}\left(\mathbf{I}-d_{\varepsilon} D^{2} d_{\varepsilon}\right)^{-1} \\ \qquad \mu_{\varepsilon}:=\frac{1}{\widetilde{\mu}_{\varepsilon} \circ \mathbf{P}_{\varepsilon}} \operatorname{det}\left(\mathbf{I}-d_{\varepsilon} D^{2} d_{\varepsilon}\right) \\ \text {and } \widetilde{\mu}_{\varepsilon} \text { is defined in Lemma } 29 \end{aligned}}\end{array}
同样地,对于“基于γε\gamma_\varepsilon法向的γ\gamma的自然扩充”uufεf_\varepsilon,在区域里面,有上述的一个PDE关系。这里所谓的“基于γε\gamma_\varepsilon法向的γ\gamma的自然扩充”的意思是,对于
u=u~QεPε u=\widetilde{u} \circ \mathbf{Q}_{\varepsilon} \circ \mathbf{P}_{\varepsilon} fε:=f~εPε=f~QεPε f_{\varepsilon}:=\widetilde{f}_{\varepsilon} \circ \mathbf{P}_{\varepsilon}=\widetilde{f} \circ \mathbf{Q}_{\varepsilon} \circ \mathbf{P}_{\varepsilon}
我们可以这样理解:做γϵ\gamma_\epsilon的法向直线,交γ\gamma于某一点,那么直线上任意点的uuff值都定义为他们在这个“某一点”上的u~\tilde uf~\tilde f值。即:
x~=x+sdε(x)u(x)=u~(x~) \widetilde{\mathbf{x}}=\mathbf{x}+s \nabla d_{\varepsilon}(\mathbf{x}) \quad \Rightarrow \quad {u}(\mathbf{x})=\tilde u(\widetilde{\mathbf{x}}) x~=x+sdε(x)fε(x)=f~(x~) \widetilde{\mathbf{x}}=\mathbf{x}+s \nabla d_{\varepsilon}(\mathbf{x}) \quad \Rightarrow \quad f_{\varepsilon}(\mathbf{x})=\widetilde{f}(\widetilde{\mathbf{x}})
这些成立于最近点投影是唯一的条件下。