机器学习算法整理(二)梯度下降求解逻辑回归 python实现

机器学习算法整理(二)梯度下降求解逻辑回归 python实现

逻辑回归(Logistic regression) 

以下均为自己看视频做的笔记,自用,侵删!

还参考了:http://www.ai-start.com/ml2014/

机器学习算法整理(二)梯度下降求解逻辑回归 python实现

机器学习算法整理(二)梯度下降求解逻辑回归 python实现

机器学习算法整理(二)梯度下降求解逻辑回归 python实现

机器学习算法整理(二)梯度下降求解逻辑回归 python实现

机器学习算法整理(二)梯度下降求解逻辑回归 python实现

机器学习算法整理(二)梯度下降求解逻辑回归 python实现

 用梯度下降求解逻辑回归 Logistic Regression

The data

我们将建立一个逻辑回归模型来预测一个学生是否被大学录取。假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会。你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集。对于每一个培训例子,你有两个考试的申请人的分数和录取决定。为了做到这一点,我们将建立一个分类模型,根据考试成绩估计入学概率。

In [7]:
#三大件
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
In [8]:
import os
path = 'data' + os.sep + 'LogiReg_data.txt'
pdData = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted'])
pdData.head()
Out[8]:
  Exam 1 Exam 2 Admitted
0 34.623660 78.024693 0
1 30.286711 43.894998 0
2 35.847409 72.902198 0
3 60.182599 86.308552 1
4 79.032736 75.344376 1
In [10]:
positive = pdData[pdData['Admitted'] == 1] # returns the subset of rows such Admitted = 1, i.e. the set of *positive* examples
negative = pdData[pdData['Admitted'] == 0] # returns the subset of rows such Admitted = 0, i.e. the set of *negative* examples
​
fig, ax = plt.subplots(figsize=(10,5))
ax.scatter(positive['Exam 1'], positive['Exam 2'], s=30, c='b', marker='o', label='Admitted')
ax.scatter(negative['Exam 1'], negative['Exam 2'], s=30, c='r', marker='x', label='Not Admitted')
ax.legend()
ax.set_xlabel('Exam 1 Score')
ax.set_ylabel('Exam 2 Score')
 
Out[10]:
Text(0,0.5,'Exam 2 Score')
 
机器学习算法整理(二)梯度下降求解逻辑回归 python实现

The logistic regression 

目标:建立分类器(求解出三个参数 θ0θ1θ2

设定阈值,根据阈值判断录取结果

要完成的模块

  • sigmoid : 映射到概率的函数

  • model : 返回预测结果值

  • cost : 根据参数计算损失

  • gradient : 计算每个参数的梯度方向

  • descent : 进行参数更新

  • accuracy: 计算精度

sigmoid 函数

机器学习算法整理(二)梯度下降求解逻辑回归 python实现
In [11]:
def sigmoid(z):
    return 1 / (1 + np.exp(-z))
In [12]:
nums = np.arange(-10, 10, step=1) #creates a vector containing 20 equally spaced values from -10 to 10
fig, ax = plt.subplots(figsize=(12,4))
ax.plot(nums, sigmoid(nums), 'r')
Out[12]:
[<matplotlib.lines.Line2D at 0x15117048>]
 
机器学习算法整理(二)梯度下降求解逻辑回归 python实现
 

Sigmoid

  • g:[0,1]
  • g(0)=0.5
  • g()=0
  • g(+)=1
In [13]:
def model(X, theta):
    return sigmoid(np.dot(X, theta.T))
机器学习算法整理(二)梯度下降求解逻辑回归 python实现
In [14]:
pdData.insert(0, 'Ones', 1) # in a try / except structure so as not to return an error if the block si executed several times
# set X (training data) and y (target variable)
orig_data = pdData.as_matrix() # convert the Pandas seful for further computations 
X = orig_data[:,0:cols-1]
y = orig_data[:,cols-1:cols]
​
# convert to numpy arrays and initalize the parameter array theta
#X = np.matrix(X.values)
#y = np.matrix(data.iloc[:,3:4].values) #np.array(y.values)
theta = np.zeros([1, 3])
In [15]:
X[:5]
Out[15]:
array([[  1.        ,  34.62365962,  78.02469282],
       [  1.        ,  30.28671077,  43.89499752],
       [  1.        ,  35.84740877,  72.90219803],
       [  1.        ,  60.18259939,  86.3085521 ],
       [  1.        ,  79.03273605,  75.34437644]])
In [16]:
y[:5]
Out[16]:
array([[ 0.],
       [ 0.],
       [ 0.],
       [ 1.],
       [ 1.]])
In [17]:
theta
Out[17]:
array([[ 0.,  0.,  0.]])
In [18]:
X.shape, y.shape, theta.shape
Out[18]:
((100, 3), (100, 1), (1, 3))

损失函数

机器学习算法整理(二)梯度下降求解逻辑回归 python实现

In [19]:
def cost(X, y, theta):
    left = np.multiply(-y, np.log(model(X, theta)))
    right = np.multiply(1 - y, np.log(1 - model(X, theta)))
    return np.sum(left - right) / (len(X))
In [20]:
cost(X, y, theta)
Out[20]:
0.69314718055994529

计算梯度

机器学习算法整理(二)梯度下降求解逻辑回归 python实现
In [21]:
def gradient(X, y, theta):
    grad = np.zeros(theta.shape)  # (1,3)
    error = (model(X, theta)- y).ravel()
    for j in range(len(theta.ravel())): #for each parmeter
        term = np.multiply(error, X[:,j])
        grad[0, j] = np.sum(term) / len(X)
    
    return grad

Gradient descent

比较3中不同梯度下降方法

In [22]:
STOP_ITER = 0
STOP_COST = 1
STOP_GRAD = 2def stopCriterion(type, value, threshold):
    #设定三种不同的停止策略
    if type == STOP_ITER:        return value > threshold
    elif type == STOP_COST:      return abs(value[-1]-value[-2]) < threshold
    elif type == STOP_GRAD:      return np.linalg.norm(value) < threshold
In [23]:
import numpy.random
#洗牌
def shuffleData(data):
    np.random.shuffle(data)
    cols = data.shape[1]
    X = data[:, 0:cols-1]
    y = data[:, cols-1:]
    return X, y
In [24]:
import time
​
def descent(data, theta, batchSize, stopType, thresh, alpha):
    #梯度下降求解
    
    init_time = time.time()
    i = 0 # 迭代次数
    k = 0 # batch
    X, y = shuffleData(data)
    grad = np.zeros(theta.shape) # 计算的梯度
    costs = [cost(X, y, theta)] # 损失值
while True:
        grad = gradient(X[k:k+batchSize], y[k:k+batchSize], theta)
        k += batchSize #取batch数量个数据
        if k >= n: 
            k = 0 
            X, y = shuffleData(data) #重新洗牌
        theta = theta - alpha*grad # 参数更新
        costs.append(cost(X, y, theta)) # 计算新的损失
        i += 1if stopType == STOP_ITER:       value = i
        elif stopType == STOP_COST:     value = costs
        elif stopType == STOP_GRAD:     value = grad
        if stopCriterion(stopType, value, thresh): break
    
    return theta, i-1, costs, grad, time.time() - init_time

 
In [25]:
def runExpe(data, theta, batchSize, stopType, thresh, alpha):
    #import pdb; pdb.set_trace();
    theta, iter, costs, grad, dur = descent(data, theta, batchSize, stopType, thresh, alpha)
    name = "Original" if (data[:,1]>2).sum() > 1 else "Scaled"
    name += " data - learning rate: {} - ".format(alpha)
    if batchSize==n: strDescType = "Gradient"
    elif batchSize==1:  strDescType = "Stochastic"
    else: strDescType = "Mini-batch ({})".format(batchSize)
    name += strDescType + " descent - Stop: "
    if stopType == STOP_ITER: strStop = "{} iterations".format(thresh)
    elif stopType == STOP_COST: strStop = "costs change < {}".format(thresh)
    else: strStop = "gradient norm < {}".format(thresh)
    name += strStop
    print ("***{}\nTheta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(
        name, theta, iter, costs[-1], dur))
    fig, ax = plt.subplots(figsize=(12,4))
    ax.plot(np.arange(len(costs)), costs, 'r')
    ax.set_xlabel('Iterations')
    ax.set_ylabel('Cost')
    ax.set_title(name.upper() + ' - Error vs. Iteration')
    return theta
 

不同的停止策略

设定迭代次数

In [26]:
#选择的梯度下降方法是基于所有样本的
n=100
runExpe(orig_data, theta, n, STOP_ITER, thresh=5000, alpha=0.000001)
***Original data - learning rate: 1e-06 - Gradient descent - Stop: 5000 iterations
Theta: [[-0.00027127  0.00705232  0.00376711]] - Iter: 5000 - Last cost: 0.63 - Duration: 1.52s
Out[26]:
array([[-0.00027127,  0.00705232,  0.00376711]])
 
机器学习算法整理(二)梯度下降求解逻辑回归 python实现
 

根据损失值停止

设定阈值 1E-6, 差不多需要110 000次迭代

In [27]:
runExpe(orig_data, theta, n, STOP_COST, thresh=0.000001, alpha=0.001)
***Original data - learning rate: 0.001 - Gradient descent - Stop: costs change < 1e-06
Theta: [[-5.13364014  0.04771429  0.04072397]] - Iter: 109901 - Last cost: 0.38 - Duration: 39.86s
Out[27]:
array([[-5.13364014,  0.04771429,  0.04072397]])
 
机器学习算法整理(二)梯度下降求解逻辑回归 python实现

根据梯度变化停止

设定阈值 0.05,差不多需要40 000次迭代

In [28]:
runExpe(orig_data, theta, n, STOP_GRAD, thresh=0.05, alpha=0.001)
***Original data - learning rate: 0.001 - Gradient descent - Stop: gradient norm < 0.05
Theta: [[-2.37033409  0.02721692  0.01899456]] - Iter: 40045 - Last cost: 0.49 - Duration: 13.44s
Out[28]:
array([[-2.37033409,  0.02721692,  0.01899456]])
 
机器学习算法整理(二)梯度下降求解逻辑回归 python实现

对比不同的梯度下降方法

Stochastic descent

In [29]:
runExpe(orig_data, theta, 1, STOP_ITER, thresh=5000, alpha=0.001)
***Original data - learning rate: 0.001 - Stochastic descent - Stop: 5000 iterations
Theta: [[-0.38585397  0.09042018 -0.01044445]] - Iter: 5000 - Last cost: 1.53 - Duration: 0.48s
Out[29]:
array([[-0.38585397,  0.09042018, -0.01044445]])
 
机器学习算法整理(二)梯度下降求解逻辑回归 python实现
 

有点爆炸。。。很不稳定,再来试试把学习率调小一些

In [30]:
runExpe(orig_data, theta, 1, STOP_ITER, thresh=15000, alpha=0.000002)
***Original data - learning rate: 2e-06 - Stochastic descent - Stop: 15000 iterations
Theta: [[-0.00201963  0.01014321  0.00107125]] - Iter: 15000 - Last cost: 0.63 - Duration: 1.70s
Out[30]:
array([[-0.00201963,  0.01014321,  0.00107125]])
 
机器学习算法整理(二)梯度下降求解逻辑回归 python实现
 

速度快,但稳定性差,需要很小的学习率

Mini-batch descent

In [31]:
runExpe(orig_data, theta, 16, STOP_ITER, thresh=15000, alpha=0.001)
***Original data - learning rate: 0.001 - Mini-batch (16) descent - Stop: 15000 iterations
Theta: [[-1.032863    0.03624659  0.02571257]] - Iter: 15000 - Last cost: 0.97 - Duration: 2.11s
Out[31]:
array([[-1.032863  ,  0.03624659,  0.02571257]])
 
机器学习算法整理(二)梯度下降求解逻辑回归 python实现

浮动仍然比较大,我们来尝试下对数据进行标准化 将数据按其属性(按列进行)减去其均值,然后除以其方差。最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1

In [32]:
from sklearn import preprocessing as pp
​
scaled_data = orig_data.copy()
scaled_data[:, 1:3] = pp.scale(orig_data[:, 1:3])
​
runExpe(scaled_data, theta, n, STOP_ITER, thresh=5000, alpha=0.001)
***Scaled data - learning rate: 0.001 - Gradient descent - Stop: 5000 iterations
Theta: [[ 0.3080807   0.86494967  0.77367651]] - Iter: 5000 - Last cost: 0.38 - Duration: 1.92s
Out[32]:
array([[ 0.3080807 ,  0.86494967,  0.77367651]])
 
机器学习算法整理(二)梯度下降求解逻辑回归 python实现
 

它好多了!原始数据,只能达到达到0.61,而我们得到了0.38个在这里! 所以对数据做预处理是非常重要的

In [33]:
runExpe(scaled_data, theta, n, STOP_GRAD, thresh=0.02, alpha=0.001)
***Scaled data - learning rate: 0.001 - Gradient descent - Stop: gradient norm < 0.02
Theta: [[ 1.0707921   2.63030842  2.41079787]] - Iter: 59422 - Last cost: 0.22 - Duration: 21.58s
Out[33]:
array([[ 1.0707921 ,  2.63030842,  2.41079787]])
 
机器学习算法整理(二)梯度下降求解逻辑回归 python实现

更多的迭代次数会使得损失下降的更多!

In [34]:
theta = runExpe(scaled_data, theta, 1, STOP_GRAD, thresh=0.002/5, alpha=0.001)
***Scaled data - learning rate: 0.001 - Stochastic descent - Stop: gradient norm < 0.0004
Theta: [[ 1.14904527  2.7920262   2.56725991]] - Iter: 72624 - Last cost: 0.22 - Duration: 9.14s
 
机器学习算法整理(二)梯度下降求解逻辑回归 python实现

随机梯度下降更快,但是我们需要迭代的次数也需要更多,所以还是用batch的比较合适!!!

In [35]:
 
runExpe(scaled_data, theta, 16, STOP_GRAD, thresh=0.002*2, alpha=0.001)
***Scaled data - learning rate: 0.001 - Mini-batch (16) descent - Stop: gradient norm < 0.004
Theta: [[ 1.16033549  2.81496841  2.59589695]] - Iter: 2393 - Last cost: 0.22 - Duration: 0.40s
Out[35]:
array([[ 1.16033549,  2.81496841,  2.59589695]])
 
机器学习算法整理(二)梯度下降求解逻辑回归 python实现

精度

In [36]:
#设定阈值
def predict(X, theta):
    return [1 if x >= 0.5 else 0 for x in model(X, theta)]
 
In [37]:
scaled_X = scaled_data[:, :3]
y = scaled_data[:, 3]
predictions = predict(scaled_X, theta)
correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)]
accuracy = (sum(map(int, correct)) % len(correct))
print ('accuracy = {0}%'.format(accuracy))
accuracy = 89%
posted @ 2018-01-28 13:32 douzujun 阅读(...) 评论(...) 编辑 收藏