信号与系统->基本概念
基本概念
重点框架
本课程主要研究电信号随时间变化
重要定义
分类概念
连续时间信号:信号在连续时间内都有定义(只要求定义域连续)
离散信号:仅在一些离散的瞬间才有定义的信号
功率信号和能量信号
能量信号:能量有界,功率一定为0,离散变求和
功率信号:功率有界,E=∞,离散变求和
典型信号及阶跃、冲激、冲激偶
典型确定性信号:直流,单位斜坡,指数,正余弦,复指数,抽样
阶跃函数、冲激函数、冲击偶
ε
(
t
)
=
∫
−
∞
t
δ
(
τ
)
d
τ
δ
(
t
)
=
d
ε
(
t
)
d
t
\varepsilon(t)=\int_{-\infty}^{t} \delta(\tau) d \tau \quad \delta(t)=\frac{d \varepsilon(t)}{d t}
ε(t)=∫−∞tδ(τ)dτδ(t)=dtdε(t)
冲激函数的取样性
δ
(
t
)
f
(
t
)
=
δ
(
t
)
f
(
0
)
∫
−
∞
+
∞
δ
(
t
)
f
(
t
)
d
t
=
f
(
0
)
\begin{array}{l} \delta(t) f(t)=\delta(t) f(0) \\ \int_{-\infty}^{+\infty} \delta(t) f(t) d t=f(0) \end{array}
δ(t)f(t)=δ(t)f(0)∫−∞+∞δ(t)f(t)dt=f(0)
冲激偶(冲激函数的导数)
三个重要的性质
f
(
t
)
δ
′
(
t
)
=
f
(
0
)
δ
′
(
t
)
−
f
′
(
0
)
δ
(
t
)
f(t) \delta^{\prime}(t)=f(0) \delta^{\prime}(t)-f^{\prime}(0) \delta(t)
f(t)δ′(t)=f(0)δ′(t)−f′(0)δ(t)
∫ − ∞ ∞ δ ′ ( t ) f ( t ) d t = − f ′ ( 0 ) \int_{-\infty}^{\infty} \delta^{\prime}(t) f(t) d t=-f^{\prime}(0) ∫−∞∞δ′(t)f(t)dt=−f′(0)
∫
−
∞
t
δ
′
(
t
)
d
t
=
δ
(
t
)
\int_{-\infty}^{t} \delta^{\prime}(t) d t=\delta(t)
∫−∞tδ′(t)dt=δ(t)
比例性
δ
(
a
t
)
=
1
∣
a
∣
δ
(
t
)
\delta(a t)=\frac{1}{|a|} \delta(t)
δ(at)=∣a∣1δ(t)
题型
判断能量信号和功率信号
1).
x
(
t
)
=
{
e
−
t
,
t
≥
0
0
,
t
<
0
x(\mathrm{t})=\left\{\begin{array}{ll}e^{-t}, & t \geq 0 \\ 0, & t<0\end{array}\right.
x(t)={e−t,0,t≥0t<0
2).
x
(
n
)
=
{
1
,
n
≥
0
0
,
n
<
0
x(\mathrm{n})=\left\{\begin{array}{ll}1, & n \geq 0 \\ 0, & n<0\end{array}\right.
x(n)={1,0,n≥0n<0
1).
E
=
∫
−
∞
∞
∣
x
(
t
)
∣
2
d
t
=
∫
0
∞
e
−
2
t
d
t
=
1
2
\quad E\\ =\int_{-\infty}^{\infty}|x(\mathrm{t})|^{2} d t\\ =\int_{0}^{\infty} e^{-2 t} d t\\ =\frac{1}{2}
E=∫−∞∞∣x(t)∣2dt=∫0∞e−2tdt=21
能量信号
2).
P
=
lim
N
→
∞
1
2
N
+
1
∑
n
=
−
N
N
∣
x
(
n
)
∣
2
=
lim
N
→
∞
1
2
N
+
1
∑
n
=
0
N
1
=
lim
N
→
∞
N
+
1
2
N
+
1
=
1
2
\quad P\\ =\lim \limits_{N \rightarrow \infty} \frac{1}{2 N+1} \sum\limits_{n=-N}^{N}|x(\mathrm{n})|^{2}\\ =\lim \limits_{N \rightarrow \infty} \frac{1}{2 N+1} \sum\limits_{n=0}^{N} 1\\ =\lim \limits_{N \rightarrow \infty} \frac{N+1}{2 N+1}\\ =\frac{1}{2} \quad
P=N→∞lim2N+11n=−N∑N∣x(n)∣2=N→∞lim2N+11n=0∑N1=N→∞lim2N+1N+1=21
功率信号
方程和框图互相转化
连续系统
根据方程画框图
①左侧写激励,右侧写响应
②根据最高次数中间补对应数量的积分器,左侧补加法器
u
C
′
′
(
t
)
+
R
L
u
C
′
(
t
)
+
1
L
C
u
C
(
t
)
=
1
L
C
u
S
(
t
)
u_{C}^{\prime \prime}(t)+\frac{R}{L} u_{C}^{\prime}(t)+\frac{1}{L C} u_{C}(t)=\frac{1}{L C} u_{S}(t)
uC′′(t)+LRuC′(t)+LC1uC(t)=LC1uS(t)
y
′
′
(
t
)
+
a
y
′
(
t
)
+
b
y
(
t
)
=
c
f
(
t
)
y^{\prime \prime}(t)+a y^{\prime}(t)+b y(t)=c f(t)
y′′(t)+ay′(t)+by(t)=cf(t)
a
=
R
L
b
=
1
L
C
c
=
1
L
C
a=\frac{R}{L} \quad b=\frac{1}{L C} \quad c=\frac{1}{L C}
a=LRb=LC1c=LC1
y
′
′
(
t
)
=
−
a
y
′
(
t
)
−
b
y
(
t
)
+
c
f
(
t
)
y^{\prime \prime}(t)=-a y^{\prime}(t)-b y(t)+c f(t)
y′′(t)=−ay′(t)−by(t)+cf(t)
根据框图画方程
①设置中间变量,左边高次,右边低次
②列写两个加法器
左边加法器
x
′
′
(
t
)
=
−
a
2
x
′
(
t
)
−
a
1
x
(
t
)
+
f
(
t
)
x^{\prime \prime}(t)=-a_{2} x^{\prime}(t)-a_{1} x(t)+f(t)
x′′(t)=−a2x′(t)−a1x(t)+f(t)
x
′
′
(
t
)
+
a
2
x
′
(
t
)
+
a
1
x
(
t
)
=
f
(
t
)
x^{\prime \prime}(t)+a_{2} x^{\prime}(t)+a_{1} x(t)=f(t)
x′′(t)+a2x′(t)+a1x(t)=f(t)
右边加法器
y
(
t
)
=
b
2
x
′
′
(
t
)
+
b
1
x
′
(
t
)
+
x
(
t
)
a
1
y
(
t
)
=
b
2
a
1
x
′
′
(
t
)
+
b
1
a
1
x
′
(
t
)
+
a
1
x
(
t
)
a
2
y
′
(
t
)
=
b
2
(
a
2
x
′
′
(
t
)
)
′
+
b
1
(
a
2
x
′
(
t
)
)
′
+
a
2
x
′
(
t
)
y
′
′
(
t
)
=
b
2
(
x
′
′
(
t
)
)
′
′
+
b
1
(
x
′
(
t
)
)
′
′
+
x
′
′
(
t
)
y(t)=b_{2} x^{\prime \prime}(t)+b_{1} x^{\prime}(t)+x(t)\\ a_{1} y(t)=b_{2} a_{1} x^{\prime \prime}(t)+b_{1} a_{1} x^{\prime}(t)+a_{1} x(t) \\ a_{2} y^{\prime}(t) =b_{2}\left(a_{2} x^{\prime \prime}(t)\right)^{\prime}+b_{1}\left(a_{2} x^{\prime}(t)\right)^{\prime}+a_{2} x^{\prime}(t) \\ y^{\prime \prime}(t) =b_{2}\left(x^{\prime \prime}(t)\right)^{\prime \prime}+b_{1}\left(x^{\prime}(t)\right)^{\prime \prime}+x^{\prime \prime}(t)
y(t)=b2x′′(t)+b1x′(t)+x(t)a1y(t)=b2a1x′′(t)+b1a1x′(t)+a1x(t)a2y′(t)=b2(a2x′′(t))′+b1(a2x′(t))′+a2x′(t)y′′(t)=b2(x′′(t))′′+b1(x′(t))′′+x′′(t)
y
′
′
(
t
)
+
a
2
y
′
(
t
)
+
a
1
y
(
t
)
=
b
2
(
x
′
′
(
t
)
+
a
2
x
′
(
t
)
+
a
1
x
(
t
)
)
′
′
+
b
1
(
x
′
′
(
t
)
+
a
2
x
′
(
t
)
+
a
1
x
(
t
)
)
′
+
x
′
′
(
t
)
+
a
2
x
′
(
t
)
+
a
1
x
(
t
)
=
b
2
f
′
′
(
t
)
+
b
1
f
′
(
t
)
+
f
(
t
)
y^{\prime \prime}(t)+a_{2} y^{\prime}(t)+a_{1} y(t) \\ =b_{2}(x^{\prime \prime}(t)+a_{2} x^{\prime}(t)+a_{1} x(t))^{\prime \prime}+b_{1}\left(x^{\prime \prime}(t)+a_{2} x^{\prime}(t)+a_{1} x(t)\right)^{\prime}+x^{\prime \prime}(t)+a_{2} x^{\prime}(t)+a_{1} x(t)\\ =b_{2} f^{\prime \prime}(t)+b_{1} f^{\prime}(t)+f(t)
y′′(t)+a2y′(t)+a1y(t)=b2(x′′(t)+a2x′(t)+a1x(t))′′+b1(x′′(t)+a2x′(t)+a1x(t))′+x′′(t)+a2x′(t)+a1x(t)=b2f′′(t)+b1f′(t)+f(t)
最终结果
y
′
′
(
t
)
+
a
2
y
′
(
t
)
+
a
1
y
(
t
)
=
b
2
f
′
′
(
t
)
+
b
1
f
′
(
t
)
+
f
(
t
)
y^{\prime \prime}(t)+a_{2} y^{\prime}(t)+a_{1} y(t) =b_{2} f^{\prime \prime}(t)+b_{1} f^{\prime}(t)+f(t)
y′′(t)+a2y′(t)+a1y(t)=b2f′′(t)+b1f′(t)+f(t)
离散系统
y
(
k
)
−
(
1
+
a
−
b
)
y
(
k
−
1
)
=
f
(
k
)
y(k)-(1+a-b) y(k-1)=f(k)
y(k)−(1+a−b)y(k−1)=f(k)
左边加法器
x
(
k
)
=
f
(
k
)
−
a
2
x
(
k
−
1
)
−
a
1
x
(
k
−
2
)
x(k)=f(k)-a_{2} x(k-1)-a_{1} x(k-2)
x(k)=f(k)−a2x(k−1)−a1x(k−2)
f
(
k
)
=
x
(
k
)
+
a
2
x
(
k
−
1
)
+
a
1
x
(
k
−
2
)
f(k)=x(k)+a_{2} x(k-1)+a_{1} x(k-2)
f(k)=x(k)+a2x(k−1)+a1x(k−2)
右边加法器
y
(
k
)
=
b
1
x
(
k
)
+
x
(
k
−
2
)
\mathrm{y}(\mathrm{k})=b_{1} \mathrm{x}(\mathrm{k})+\mathrm{x}(\mathrm{k}-2)
y(k)=b1x(k)+x(k−2)
a
2
y
(
k
−
1
)
=
b
1
a
2
x
(
k
−
1
)
+
a
2
x
(
k
−
3
)
a_{2} y(k-1)=b_{1} a_{2} x(k-1)+a_{2} x(k-3)
a2y(k−1)=b1a2x(k−1)+a2x(k−3)
a
1
y
(
k
−
2
)
=
b
1
a
1
x
(
k
−
2
)
+
a
1
x
(
k
−
4
)
a_{1} y(k-2)=b_{1} a_{1} x(k-2)+a_{1} x(k-4)
a1y(k−2)=b1a1x(k−2)+a1x(k−4)
y
(
k
)
+
a
2
y
(
k
−
1
)
+
a
1
y
(
k
−
2
)
=
b
1
[
x
(
k
)
+
a
2
x
(
k
−
1
)
+
a
1
x
(
k
−
2
)
]
+
[
x
(
k
−
2
)
+
a
2
x
(
k
−
3
)
+
a
1
x
(
k
−
4
)
]
=
b
1
f
(
k
)
+
f
(
k
−
2
)
y(k)+a_{2} y(k-1)+a_{1} y(k-2)\\ =b_{1}\left[x(k)+a_{2} x(k-1)+a_{1} x(k-2)\right]+\left[x(k-2)+a_{2} x(k-3)+a_{1} x(k-4)\right]\\ =b_{1} f(k)+f(k-2)
y(k)+a2y(k−1)+a1y(k−2)=b1[x(k)+a2x(k−1)+a1x(k−2)]+[x(k−2)+a2x(k−3)+a1x(k−4)]=b1f(k)+f(k−2)
y
(
k
)
+
a
2
y
(
k
−
1
)
+
a
1
y
(
k
−
2
)
=
b
1
f
(
k
)
+
f
(
k
−
2
)
y(k)+a_{2} y(k-1)+a_{1} y(k-2)=b_{1} f(k)+f(k-2)
y(k)+a2y(k−1)+a1y(k−2)=b1f(k)+f(k−2)
判断线性系统
1.判断分解特性(写出两种输入相加)
2.判断零状态响应,零输入响应线性特征
(
1
)
y
(
t
)
=
f
(
t
)
+
3
x
(
0
)
f
(
t
)
+
6
x
(
0
)
+
5
(
2
)
y
(
t
)
=
5
∣
f
(
t
)
∣
+
6
x
(
0
)
\begin{array}{ll}(1) y(t)=f(t)+3 x(0) f(t)+6 x(0)+5 & (2) y(t)=5|f(t)|+6 x(0)\end{array}
(1)y(t)=f(t)+3x(0)f(t)+6x(0)+5(2)y(t)=5∣f(t)∣+6x(0)
(3)
y
(
k
)
=
7
f
(
k
)
+
2
x
(
0
)
2
y(k)=7 f(k)+2 x(0)^{2}
y(k)=7f(k)+2x(0)2
(1)
y
z
i
(
t
)
=
6
x
(
0
)
+
5
y
z
s
(
t
)
=
f
(
t
)
+
5
y
(
t
)
≠
y
z
i
(
t
)
+
y
z
s
(
t
)
y_{z i}(t)=6 x(0)+5 \quad y_{z s}(t)=f(t)+5 \quad y(t) \neq y_{z i}(t)+y_{z s}(t) \quad
yzi(t)=6x(0)+5yzs(t)=f(t)+5y(t)=yzi(t)+yzs(t) 不满足分解特性,非线性系统
(2)
y
z
i
(
t
)
=
6
x
(
0
)
y
z
s
(
t
)
=
5
∣
f
(
t
)
∣
y
(
t
)
=
y
z
i
(
t
)
+
y
z
s
(
t
)
\begin{array}{lll}\text {} y_{z i}(t)=6 x(0) & y_{z s}(t)=5|f(t)| & y(t)=y_{z i}(t)+y_{z s}(t) & \text { }\end{array}
yzi(t)=6x(0)yzs(t)=5∣f(t)∣y(t)=yzi(t)+yzs(t) 满足分解特性
T
[
{
0
}
,
{
a
f
(
t
)
}
]
=
5
∣
a
f
(
t
)
∣
≠
a
y
z
s
(
t
)
T[\{0\},\{a f(t)\}]=5|a f(t)| \neq a y_{z s}(t) \quad
T[{0},{af(t)}]=5∣af(t)∣=ayzs(t) 不满足零状态响应线性特征, 非线性系统
(3)
y
z
i
(
t
)
=
2
x
(
0
)
2
y
z
s
(
t
)
=
7
f
(
k
)
y
(
t
)
=
y
z
i
(
t
)
+
y
z
s
(
t
)
\begin{array}{lll}\text { } y_{z i}(t)=2 x(0)^{2} & y_{z s}(t)=7 f(k) & y(t)=y_{z i}(t)+y_{z s}(t) & \text { }\end{array}
yzi(t)=2x(0)2yzs(t)=7f(k)y(t)=yzi(t)+yzs(t) 满足分解特性
T
[
{
a
x
(
0
)
}
,
{
0
}
]
=
2
(
a
x
(
0
)
)
2
≠
a
y
z
i
(
t
)
T[\{a x(0)\},\{0\}]=2(a x(0))^{2} \neq a y_{z i}(t) \quad
T[{ax(0)},{0}]=2(ax(0))2=ayzi(t) 不满足零输入响应线性特征, 非线性系统
判断时变系统
若激励之前有变系数, 或反转、展缩变换, 则系统为时变系统
1.输入激励
2.从响应式子中做周期推移
(
1
)
y
z
s
(
t
)
=
f
(
t
)
f
(
t
−
5
)
(
2
)
y
z
s
(
k
)
=
k
f
(
k
−
2
)
(
3
)
y
z
s
(
k
)
=
f
(
−
k
)
(
4
)
y
z
s
(
k
)
=
f
(
3
k
)
(1) y_{z s}(t)=f(t) f(t-5)(2) y_{z s}(k)=k f(k-2)(3) y_{z s}(k)=f(-k)(4) y_{z s}(k)=f(3 k)
(1)yzs(t)=f(t)f(t−5)(2)yzs(k)=kf(k−2)(3)yzs(k)=f(−k)(4)yzs(k)=f(3k)
(1)
令
g
(
t
)
=
f
(
t
−
t
d
)
,
令g(t)=f\left(t-t_{d}\right),
令g(t)=f(t−td), 则
T
[
{
0
}
,
{
g
(
t
)
}
]
=
g
(
t
)
g
(
t
−
5
)
=
f
(
t
−
t
d
)
f
(
t
−
t
d
−
5
)
T[\{0\},\{g(t)\}]=g(t) g(t-5)=f\left(t-t_{d}\right) f\left(t-t_{d}-5\right)
T[{0},{g(t)}]=g(t)g(t−5)=f(t−td)f(t−td−5)
y
z
s
(
t
−
t
d
)
=
f
(
t
−
t
d
)
f
(
t
−
t
d
−
5
)
T
[
{
0
}
,
{
f
(
t
−
t
d
)
}
]
=
y
z
s
(
t
−
t
d
)
y_{z s}\left(t-t_{d}\right)=f\left(t-t_{d}\right) f\left(t-t_{d}-5\right) T\left[\{0\},\left\{f\left(t-t_{d}\right)\right\}\right]=y_{z s}\left(t-t_{d}\right)
yzs(t−td)=f(t−td)f(t−td−5)T[{0},{f(t−td)}]=yzs(t−td) 所以是时不变系统
(2)
令
g
(
k
)
=
f
(
k
−
k
d
)
,
{\text { 令}} g(k)=f\left(k-k_{d}\right),
令g(k)=f(k−kd), 则
T
[
{
0
}
,
{
g
(
k
)
}
]
=
k
g
(
k
−
2
)
=
k
f
(
k
−
k
d
−
2
)
T[\{0\},\{g(k)\}]=k g(k-2)=k f\left(k-k_{d}-2\right)
T[{0},{g(k)}]=kg(k−2)=kf(k−kd−2)
y
z
s
(
k
−
k
d
)
=
(
k
−
k
d
)
f
(
k
−
k
d
−
2
)
T
[
{
0
}
,
{
f
(
k
−
k
d
)
}
]
≠
y
z
s
(
k
−
k
d
)
y_{z s}\left(k-k_{d}\right)=\left(k-k_{d}\right) f\left(k-k_{d}-2\right) T\left[\{0\},\left\{f\left(k-k_{d}\right)\right\}\right] \neq y_{z s}\left(k-k_{d}\right)
yzs(k−kd)=(k−kd)f(k−kd−2)T[{0},{f(k−kd)}]=yzs(k−kd) 所以是时变系统
(3)
令
g
(
k
)
=
f
(
k
−
k
d
)
,
令 g(k)=f\left(k-k_{d}\right), \quad
令g(k)=f(k−kd), 则
T
[
{
0
}
,
{
g
(
k
)
}
]
=
g
(
−
k
)
=
f
(
−
k
−
k
d
)
T[\{0\},\{g(k)\}]=g(-k)=f\left(-k-k_{d}\right)
T[{0},{g(k)}]=g(−k)=f(−k−kd)
y
z
s
(
k
−
k
d
)
=
f
(
−
(
k
−
k
d
)
)
T
[
{
0
}
,
{
f
(
k
−
k
d
)
}
]
≠
y
z
s
(
k
−
k
d
)
y_{z s}\left(k-k_{d}\right)=f\left(-\left(k-k_{d}\right)\right) \quad T\left[\{0\},\left\{f\left(k-k_{d}\right)\right\}\right] \neq y_{z s}\left(k-k_{d}\right)
yzs(k−kd)=f(−(k−kd))T[{0},{f(k−kd)}]=yzs(k−kd)
所以是时变系统
(4)
令
g
(
k
)
=
f
(
k
−
k
d
)
,
令g(k)=f\left(k-k_{d}\right),
令g(k)=f(k−kd), 则
T
[
{
0
}
,
{
g
(
k
)
}
]
=
g
(
3
k
)
=
f
(
3
k
−
k
d
)
T[\{0\},\{g(k)\}]=g(3 k)=f\left(3 k-k_{d}\right)
T[{0},{g(k)}]=g(3k)=f(3k−kd)
y
z
s
(
k
−
k
d
)
=
f
(
3
(
k
−
k
d
)
)
T
[
{
0
}
,
{
f
(
k
−
k
d
)
}
]
≠
y
z
s
(
k
−
k
d
)
y_{z s}\left(k-k_{d}\right)=f\left(3\left(k-k_{d}\right)\right) \quad T\left[\{0\},\left\{f\left(k-k_{d}\right)\right\}\right] \neq y_{z s}\left(k-k_{d}\right) \quad
yzs(k−kd)=f(3(k−kd))T[{0},{f(k−kd)}]=yzs(k−kd) 所以是时变系统
判断因果系统
1.令
t
<
t
0
时
f
(
t
)
=
0
t<t_{0}时f{(t})=0
t<t0时f(t)=0
2.将
t
0
t_0
t0代入式中
若
t
<
t
0
(
t<t_{0}\left(\right.
t<t0( 或
k
<
k
0
)
\left.k<k_{0}\right)
k<k0) 时,
\quad
激励
f
(
t
)
(
f(\mathrm{t}) \quad(
f(t)( 或
f
(
k
)
)
=
0
,
f(\mathrm{k}))=0,
f(k))=0, 则当
t
<
t
0
(
t<t_{0} \quad\left(\right.
t<t0( 或
k
<
k
0
)
\left.k<k_{0}\right)
k<k0) 时,
y
z
s
(
t
)
=
0
(
\mathrm{y}_{\mathrm{zs}}(\mathrm{t})=0\left(\right.
yzs(t)=0( 或
y
z
s
(
k
)
=
0
)
\left.\mathrm{y}_{\mathrm{zs}}(\mathrm{k})=0\right)
yzs(k)=0)
(1)
y
z
s
(
t
)
=
f
(
t
−
1
)
y_{z s}(t)=f(t-1)
yzs(t)=f(t−1)
(2)
y
z
s
(
t
)
=
f
(
t
+
1
)
y_{z s}(t)=f(t+1)
yzs(t)=f(t+1)
(3)
y
z
s
(
t
)
=
f
(
2
t
)
y_{z s}(t)=f(2 t)
yzs(t)=f(2t)
(1) 若
t
<
t
0
时,
f
(
t
)
=
0
,
有
y
z
s
(
t
0
)
=
f
(
t
0
−
1
)
=
0
,
是因果系统
\begin{array}{ll}\text { (1) 若 } t<t_{0} \text { 时, } f(\mathrm{t})=0, & \text { 有 } \mathrm{y}_{\mathrm{zs}}\left(\mathrm{t}_{0}\right)=f\left(\mathrm{t}_{0}-1\right)=0, \text { 是因果系统 }\end{array}
(1) 若 t<t0 时, f(t)=0, 有 yzs(t0)=f(t0−1)=0, 是因果系统
(2) 若
t
<
t
0
时,
f
(
t
)
=
0
,
有
y
z
s
(
t
0
)
=
f
(
t
0
+
1
)
≠
0
,
是非因果系统
\begin{array}{ll}\text { (2) 若 } t<t_{0} \text { 时, } f(\mathrm{t})=0, & \text { 有 } \mathrm{y}_{\mathrm{zs}}\left(\mathrm{t}_{0}\right)=f\left(\mathrm{t}_{0}+1\right) \neq 0, \text { 是非因果系统 }\end{array}
(2) 若 t<t0 时, f(t)=0, 有 yzs(t0)=f(t0+1)=0, 是非因果系统
(3) 若
t
<
t
0
时,
f
(
t
)
=
0
,
有y
z
s
(
t
0
)
=
f
(
2
t
0
)
≠
0
,
是非因果系统
\begin{array}{ll}\text { (3) 若 } t<t_{0} \text { 时, } f(\mathrm{t})=0, & \text { 有y }_{\mathrm{zs}}\left(\mathrm{t}_{0}\right)=f\left(2\mathrm{t}_{0}\right) \neq 0, \text { 是非因果系统 }\end{array}
(3) 若 t<t0 时, f(t)=0, 有y zs(t0)=f(2t0)=0, 是非因果系统 (因为是
1
2
t
0
到
t
0
之
间
\frac{1}{2}t_0到t_0之间
21t0到t0之间?)
查缺补漏
信号
信号的定义
信号是信息的物理表现和传偷載体,它一般是一种随时间变化而变化的物理量. 根据物理属性,信号可以分为电信号和非电信号。
电信号:随时间变化的电压或电流.
电信号容易产生,便于控制,易于处理。本课程主要讨论电信号,简称为信号。
信号的描述方法:
(1)数学函数表达式
(2)图形表达形式
按实际用途划分
电视信号
雷达信号
控制信号
通信信号
广播信号
按时间特性分为:
一维信号和多维信号
确定信号和随机信号
连续信号和离散信号
庄期信号和非周期信号
实信号和复信号
能量信号和功率信号
一维信号: 只由一个自变量描述的信号, 如语音信号
多维信号: 由多个自变量描述的信号, 如图徽信号
确定性信号
可用确定的时间函数表示的信号。
随机信号
取值具有未可预知的不确定性信号。
伪随机信号
看似随机但却道循一定规律的信号 ( 如伪随机码 )
连续时间信号 : 信号在连续时间内都有定义
用t表示连续时间变量
这里的 "连续” 指函数的定义域 - 时间是连续的,并不要求值域也连续,即信号可含间断点。
仅在一些离散的瞬间才有定义的信号,简称离散信号。
周期信号
定义在
(
−
∞
,
∞
)
(-\infty, \infty)
(−∞,∞) 区间
,
,
, 每隔一定时间T (或整数
N
\mathrm{N}
N ),按相同规律重复变化的信号。
f
(
n
)
=
f
(
t
+
n
T
)
,
n
=
0
,
±
1
,
±
2
,
…
f
(
k
)
=
f
(
k
+
n
N
)
,
n
=
0
,
±
1
,
±
2
,
…
f(n)=f(t+n T), \quad n=0,\pm 1,\pm 2, \ldots\\ f(k)=f(k+n N), \quad n=0,\pm 1,\pm 2, \ldots
f(n)=f(t+nT),n=0,±1,±2,…f(k)=f(k+nN),n=0,±1,±2,…
满足上述关系的最小T(或整数N)称为该信号的周期。
非周期信号
不具有周期性的信号称为非周期信号。
能量信号和功率信号
连续信号下
给定信号
f
(
t
)
,
\mathrm{f}(\mathrm{t}),
f(t), 若其施加于
1
Ω
1 \Omega
1Ω 电阻上,它所消耗的瞬时功率为
∣
f
(
t
)
∣
2
,
|f(\mathrm{t})|^{2},
∣f(t)∣2, 则该信号在区间
(
−
∞
,
∞
)
(-\infty, \infty)
(−∞,∞) 的能量和平均功率定义如下
信号的能量
E
=
∫
−
∞
∞
∣
f
(
t
)
∣
2
d
t
\quad E=\int_{-\infty}^{\infty}|f(\mathrm{t})|^{2} d t
E=∫−∞∞∣f(t)∣2dt
信号的功率
P
=
lim
T
→
+
∞
1
T
∫
−
T
/
2
T
/
2
∣
f
(
t
)
∣
2
d
t
\mathrm{P}=\lim\limits_{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|f(\mathrm{t})|^{2} d t
P=T→+∞limT1∫−T/2T/2∣f(t)∣2dt
能量信号
若
E
<
∞
,
E<\infty,
E<∞, 即信号的能量有界,则称信号
f
(
t
)
f(t)
f(t) 为能量信号。此时
p
=
0
p=0
p=0
功率信号
若
P
<
∞
P<\infty
P<∞, 即信号的功率有界,则称信号
f
(
t
)
f(t)
f(t) 为功率信号。此时
E
=
∞
E=\infty
E=∞
离散信号下
能量
E
=
∑
∣
f
(
k
)
∣
2
E=\sum|f(\mathrm{k})|^{2}
E=∑∣f(k)∣2
功率
P
=
lim
N
→
+
∞
1
N
∑
k
=
−
N
/
2
N
/
2
∣
f
(
k
)
∣
2
\mathrm{P}=\lim \limits_{N \rightarrow+\infty} \frac{1}{N} \sum_{k=-N / 2}^{N / 2}|f(\mathrm{k})|^{2}
P=N→+∞limN1∑k=−N/2N/2∣f(k)∣2
能量信号: 若
E
<
∞
,
E<\infty,
E<∞, 则为能量信号
功率信号: 若
P
<
∞
,
P<\infty,
P<∞, 则为功率信号
几种典型确定性信号
确定性信号:可用确定的时间函数表示的信号。
1.直流信号
x
(
t
)
=
C
,
−
∞
<
t
<
∞
x(t)=C, \quad-\infty<t<\infty
x(t)=C,−∞<t<∞
2.单位斜坡信号
单位指的是斜率为1
R
(
t
)
=
{
t
t
>
0
0
t
<
0
R(t)=\left\{\begin{array}{ll}t & t>0 \\ 0 & t<0\end{array}\right.
R(t)={t0t>0t<0
3.指数信号
双边指数信号
x
(
t
)
=
A
e
−
a
t
x(\mathrm{t})=A e^{-\mathrm{at}}
x(t)=Ae−at
单边指数信号
x
(
t
)
=
{
A
e
−
a
t
,
t
>
0
0
,
t
<
0
x(\mathrm{t})=\left\{\begin{array}{ll}A e^{-\mathrm{at}}, & t>0 \\ 0, & t<0\end{array}\right.
x(t)={Ae−at,0,t>0t<0
4.正余弦信号
x
(
t
)
=
A
cos
(
w
t
+
θ
)
=
A
cos
[
w
(
t
−
t
0
)
]
=
A
sin
w
t
+
θ
+
π
2
\quad x(\mathrm{t})\\ =A \cos (w t+\theta)\\ =A \cos [w(t-t_{0})] \\ =A \sin w t+\theta+\frac{\pi}{2}
x(t)=Acos(wt+θ)=Acos[w(t−t0)]=Asinwt+θ+2π
振幅:
A
A
A
周期
:
T
=
2
π
w
=
1
f
: T=\frac{2 \pi}{w}=\frac{1}{f}
:T=w2π=f1
频率:
f
f
f
角频率
:
w
=
2
π
f
: w=2 \pi f
:w=2πf
初相:
θ
\theta
θ
5.复指数信号
x
(
t
)
=
A
e
s
t
;
s
=
σ
+
j
w
=
A
e
σ
t
e
j
w
t
=
A
e
σ
t
(
cos
(
w
t
)
+
j
sin
(
w
t
)
)
讨论
:
[
σ
=
0
,
w
=
0
,
直流
σ
>
0
,
w
=
0
升指数信号
σ
<
0
,
w
=
0
衰减指数信号
σ
=
0
,
w
≠
0
,
等幅振荡
σ
>
0
,
w
≠
0
,
增幅振荡
σ
<
0
,
w
≠
0
,
衰减振荡
\begin{aligned} x(\mathrm{t})=& A \mathrm{e}^{s t} ; \quad s=\sigma+j w \\=& A e^{\sigma t} e^{j w t} \\=& A e^{\sigma t}(\cos (w t)+j \sin (w t)) \\ \text { 讨论 }: &\left[\begin{array}{ll}\sigma=0, w=0, & \text { 直流 } \\ \sigma>0, w=0 & \text { 升指数信号 } \\ \sigma<0, w=0 & \text { 衰减指数信号 } \\ \sigma=0, w \neq 0, & \text { 等幅振荡 } \\ \sigma>0, w \neq 0, & \text { 增幅振荡 } \\ \sigma<0, w \neq 0, & \text { 衰减振荡 }\end{array}\right.\end{aligned}
x(t)=== 讨论 :Aest;s=σ+jwAeσtejwtAeσt(cos(wt)+jsin(wt))⎣⎢⎢⎢⎢⎢⎢⎡σ=0,w=0,σ>0,w=0σ<0,w=0σ=0,w=0,σ>0,w=0,σ<0,w=0, 直流 升指数信号 衰减指数信号 等幅振荡 增幅振荡 衰减振荡
6.抽样信号
x
(
t
)
=
S
a
(
t
)
=
sin
t
t
x(t)=S a(\mathrm{t})=\frac{\sin t}{t}
x(t)=Sa(t)=tsint
7.阶跃函数(冲激函数的积分)
单位阶跃函数
ε
(
t
)
=
{
0
,
t
<
0
0.5
,
t
=
0
1
,
t
>
0
\varepsilon(t)=\left\{\begin{array}{c}0, t<0 \\ 0.5, t=0 \\ 1, t>0\end{array}\right.
ε(t)=⎩⎨⎧0,t<00.5,t=01,t>0
对于t=0点不同学校定义可能不同,但无关紧要,阶跃函数可以变化出很多变种
8.冲激函数/狄拉克δ函数(阶跃函数的导数)
δ
(
t
)
=
0
,
t
≠
0
∫
−
∞
+
∞
δ
(
t
)
d
t
=
∫
0
−
0
+
δ
(
t
)
d
t
=
1
\delta(t)=0, t \neq 0 \\ \int_{-\infty}^{+\infty} \delta(t) d t=\int_{0_{-}}^{0_{+}} \delta(t) d t=1
δ(t)=0,t=0∫−∞+∞δ(t)dt=∫0−0+δ(t)dt=1
函数值只在
t
=
0
t=0
t=0 时不为零
积分面积为1
t=0时
,
δ
(
t
)
→
∞
,
, \delta(t) \rightarrow \infty,
,δ(t)→∞, 为无界函数。
ε
(
t
)
=
∫
−
∞
t
δ
(
τ
)
d
τ
δ
(
t
)
=
d
ε
(
t
)
d
t
\varepsilon(t)=\int_{-\infty}^{t} \delta(\tau) d \tau \quad \delta(t)=\frac{d \varepsilon(t)}{d t}
ε(t)=∫−∞tδ(τ)dτδ(t)=dtdε(t)
阶跃函数组成的函数求导,只在台阶处有值,且正负与台阶上升还是下降有关
冲激函数的性质
如果
f
(
t
)
f(t)
f(t) 在
t
=
0
t=0
t=0 处连续,且处处有界,则有
δ
(
t
)
f
(
t
)
=
δ
(
t
)
f
(
0
)
∫
−
∞
+
∞
δ
(
t
)
f
(
t
)
d
t
=
f
(
0
)
\begin{array}{l} \delta(t) f(t)=\delta(t) f(0) \\ \int_{-\infty}^{+\infty} \delta(t) f(t) d t=f(0) \end{array}
δ(t)f(t)=δ(t)f(0)∫−∞+∞δ(t)f(t)dt=f(0)
同理可得:
f
(
t
)
δ
(
t
−
t
0
)
=
f
(
t
0
)
δ
(
t
−
t
0
)
f(t) \delta\left(t-t_{0}\right)=f\left(t_{0}\right) \delta\left(t-t_{0}\right)
f(t)δ(t−t0)=f(t0)δ(t−t0)
∫ − ∞ + ∞ δ ( t − t 0 ) f ( t ) d t = f ( t 0 ) \int_{-\infty}^{+\infty} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right) ∫−∞+∞δ(t−t0)f(t)dt=f(t0)
冲激偶
三个重要的性质
f ( t ) δ ′ ( t ) = f ( 0 ) δ ′ ( t ) − f ′ ( 0 ) δ ( t ) f(t) \delta^{\prime}(t)=f(0) \delta^{\prime}(t)-f^{\prime}(0) \delta(t) f(t)δ′(t)=f(0)δ′(t)−f′(0)δ(t)
∫ − ∞ ∞ δ ′ ( t ) f ( t ) d t = − f ′ ( 0 ) \int_{-\infty}^{\infty} \delta^{\prime}(t) f(t) d t=-f^{\prime}(0) ∫−∞∞δ′(t)f(t)dt=−f′(0)
∫ − ∞ t δ ′ ( t ) d t = δ ( t ) \int_{-\infty}^{t} \delta^{\prime}(t) d t=\delta(t) ∫−∞tδ′(t)dt=δ(t)
推导如下
f
(
t
)
δ
′
(
t
)
=
f
(
0
)
δ
′
(
t
)
−
f
′
(
0
)
δ
(
t
)
[
f
(
t
)
δ
(
t
)
]
′
=
f
(
t
)
δ
′
(
t
)
+
f
′
(
t
)
δ
(
t
)
f
(
t
)
δ
′
(
t
)
=
[
f
(
t
)
δ
(
t
)
]
′
−
f
′
(
t
)
δ
(
t
)
=
f
(
0
)
δ
′
(
t
)
−
f
′
(
0
)
δ
(
t
)
∫
−
∞
∞
δ
′
(
t
)
f
(
t
)
d
t
=
−
f
′
(
0
)
∫
−
∞
∞
δ
′
(
t
)
f
(
t
)
d
t
=
f
(
t
)
δ
(
t
)
∣
−
∞
∞
−
∫
−
∞
∞
f
′
(
t
)
δ
(
t
)
d
t
=
−
f
′
(
0
)
∫
−
∞
t
δ
′
(
t
)
d
t
=
δ
(
t
)
\begin{array}{c} f(t) \delta^{\prime}(t)=f(0) \delta^{\prime}(t)-f^{\prime}(0) \delta(t) \\ {[f(t) \delta(t)]^{\prime}=f(t) \delta^{\prime}(t)+f^{\prime}(t) \delta(t) \quad f(t) \delta^{\prime}(t)=[f(t) \delta(t)]^{\prime}-f^{\prime}(t) \delta(t)=f(0) \delta^{\prime}(t)-f^{\prime}(0) \delta(t)} \\ \int_{-\infty}^{\infty} \delta^{\prime}(t) f(t) d t=-f^{\prime}(0) \\ \int_{-\infty}^{\infty} \delta^{\prime}(t) f(t) d t=\left.f(t) \delta(t)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} f^{\prime}(t) \delta(t) d t=-f^{\prime}(0) \\ \int_{-\infty}^{t} \delta^{\prime}(t) d t=\delta(t) \end{array}
f(t)δ′(t)=f(0)δ′(t)−f′(0)δ(t)[f(t)δ(t)]′=f(t)δ′(t)+f′(t)δ(t)f(t)δ′(t)=[f(t)δ(t)]′−f′(t)δ(t)=f(0)δ′(t)−f′(0)δ(t)∫−∞∞δ′(t)f(t)dt=−f′(0)∫−∞∞δ′(t)f(t)dt=f(t)δ(t)∣−∞∞−∫−∞∞f′(t)δ(t)dt=−f′(0)∫−∞tδ′(t)dt=δ(t)
比例性质
δ ( a t ) = 1 ∣ a ∣ δ ( t ) \delta(a t)=\frac{1}{|a|} \delta(t) δ(at)=∣a∣1δ(t)
证明过程如下
p
(
t
)
\mathrm{p}(\mathrm{t})
p(t) 面积为1
,
δ
(
t
)
, \quad \delta(t)
,δ(t) 强度为1
p
(
a
t
)
\mathrm{p}(\mathrm{at})
p(at) 面积为
1
∣
a
∣
,
δ
(
a
t
)
\frac{1}{|a|}, \quad \delta(a t)
∣a∣1,δ(at) 强度为
1
∣
a
∣
\frac{1}{|a|}
∣a∣1
τ
→
0
\tau \rightarrow 0
τ→0 时
,
p
(
t
)
→
δ
(
t
)
,
p
(
a
t
)
→
1
∣
a
∣
δ
(
t
)
, p(t) \rightarrow \delta(t), p(a t) \rightarrow \frac{1}{|a|} \delta(t)
,p(t)→δ(t),p(at)→∣a∣1δ(t)
单位阶跃和单位脉冲序列
ε
(
k
)
=
{
1
,
k
≥
0
0
,
k
<
0
\varepsilon(k)=\left\{\begin{array}{l}1, k \geq 0 \\ 0, k<0\end{array}\right.
ε(k)={1,k≥00,k<0
δ
(
k
)
=
ε
(
k
)
−
ε
(
k
−
1
)
\delta(k)=\varepsilon(k)-\varepsilon(k-1)
δ(k)=ε(k)−ε(k−1)
ε
(
k
)
=
∑
i
=
−
∞
k
δ
(
i
)
\varepsilon(k)=\sum_{i=-\infty}^{k} \delta(i)
ε(k)=∑i=−∞kδ(i)
δ
(
k
)
=
{
1
,
k
=
0
0
,
k
≠
0
\delta(k)=\left\{\begin{array}{l}1, k=0 \\ 0, k \neq 0\end{array}\right.
δ(k)={1,k=00,k=0
δ
(
k
)
f
(
k
)
=
δ
(
k
)
f
(
0
)
\delta(k) f(k)=\delta(k) f(0)
δ(k)f(k)=δ(k)f(0)
f
(
k
)
δ
(
k
−
k
0
)
=
f
(
k
0
)
δ
(
k
−
k
0
)
f(k) \delta\left(k-k_{0}\right)=f\left(k_{0}\right) \delta\left(k-k_{0}\right)
f(k)δ(k−k0)=f(k0)δ(k−k0)
∑
k
=
−
∞
∞
f
(
k
)
δ
(
k
)
=
f
(
0
)
\sum\limits_{k=-\infty}^{\infty} f(k) \delta(k)=f(0)
k=−∞∑∞f(k)δ(k)=f(0)
信号的运算
相加和相乘:同一瞬间/同一序列对应值相加/相乘。
平移:左加右减
反转:对折
没有对应的器件,但是数字信号处理有相应的概念,如退栈的先进后出
尺度变换:a大压缩,a小扩展(大小以1为对应)
对于离散信号,由于 f (ak) 仅在ak为整数时才有意义,进行尺度变换时可能会使部分信号丢失。因此一般不作波形的尺度变换。
一般建议先平移,再尺度变换,再反转
只需要记住所有的变换都是对应自变量而言即可,可以取值验证
系统
由相互作用、相互联系的事物按一定规律组成的具有特定功能的整体,称为系统。手机电视都是系统。
连续系统:系统的激励是连续信号,响应也是连续信号。
离散系统:系统的激励是离散信号,响应也是离散信号。
混合系统:系统的激励是连续信号,响应是离散信号;或反之。
分析系统时,需要建立描述该系统的数学模型,求解,并对结果赋予实际意义。
连续系统:微分方程
依据基尔霍夫电压定律:
u
L
(
t
)
+
u
R
(
t
)
+
u
C
(
t
)
=
u
S
(
t
)
u_{L}(t)+u_{R}(t)+u_{C}(t)=u_{S}(t)
uL(t)+uR(t)+uC(t)=uS(t)
依据各元件的电压与电流关系:
u
L
(
t
)
=
L
i
′
(
t
)
u
R
(
t
)
=
R
i
(
t
)
i
(
t
)
=
C
u
C
′
(
t
)
u_{L}(t)=L i^{\prime}(t) u_{R}(t)=\mathrm{R} i(t) i(t)=C u_{C}^{\prime}(t)
uL(t)=Li′(t)uR(t)=Ri(t)i(t)=CuC′(t)
整理可得,
u
C
′
′
(
t
)
+
R
L
u
C
′
(
t
)
+
1
L
C
u
C
(
t
)
=
1
L
C
u
S
(
t
)
u_{C}^{\prime \prime}(t)+\frac{R}{L} u_{C}^{\prime}(t)+\frac{1}{L C} u_{C}(t)=\frac{1}{L C} u_{S}(t)
uC′′(t)+LRuC′(t)+LC1uC(t)=LC1uS(t)
上式即为描述该电路的微分方程。
响应一般写左侧,激励写右侧
框图描述
连续系统
根据方程画框图
①左侧写激励,右侧写响应
②根据最高次数中间补对应数量的积分器,左侧补加法器
u
C
′
′
(
t
)
+
R
L
u
C
′
(
t
)
+
1
L
C
u
C
(
t
)
=
1
L
C
u
S
(
t
)
u_{C}^{\prime \prime}(t)+\frac{R}{L} u_{C}^{\prime}(t)+\frac{1}{L C} u_{C}(t)=\frac{1}{L C} u_{S}(t)
uC′′(t)+LRuC′(t)+LC1uC(t)=LC1uS(t)
y
′
′
(
t
)
+
a
y
′
(
t
)
+
b
y
(
t
)
=
c
f
(
t
)
y^{\prime \prime}(t)+a y^{\prime}(t)+b y(t)=c f(t)
y′′(t)+ay′(t)+by(t)=cf(t)
a
=
R
L
b
=
1
L
C
c
=
1
L
C
a=\frac{R}{L} \quad b=\frac{1}{L C} \quad c=\frac{1}{L C}
a=LRb=LC1c=LC1
y
′
′
(
t
)
=
−
a
y
′
(
t
)
−
b
y
(
t
)
+
c
f
(
t
)
y^{\prime \prime}(t)=-a y^{\prime}(t)-b y(t)+c f(t)
y′′(t)=−ay′(t)−by(t)+cf(t)
根据框图画方程
①设置中间变量,左边高次,右边低次
左边加法器
x
′
′
(
t
)
=
−
a
2
x
′
(
t
)
−
a
1
x
(
t
)
+
f
(
t
)
x^{\prime \prime}(t)=-a_{2} x^{\prime}(t)-a_{1} x(t)+f(t)
x′′(t)=−a2x′(t)−a1x(t)+f(t)
x
′
′
(
t
)
+
a
2
x
′
(
t
)
+
a
1
x
(
t
)
=
f
(
t
)
x^{\prime \prime}(t)+a_{2} x^{\prime}(t)+a_{1} x(t)=f(t)
x′′(t)+a2x′(t)+a1x(t)=f(t)
右边加法器
y
(
t
)
=
b
2
x
′
′
(
t
)
+
b
1
x
′
(
t
)
+
x
(
t
)
a
1
y
(
t
)
=
b
2
a
1
x
′
′
(
t
)
+
b
1
a
1
x
′
(
t
)
+
a
1
x
(
t
)
a
2
y
′
(
t
)
=
b
2
(
a
2
x
′
′
(
t
)
)
′
+
b
1
(
a
2
x
′
(
t
)
)
′
+
a
2
x
′
(
t
)
y
′
′
(
t
)
=
b
2
(
x
′
′
(
t
)
)
′
′
+
b
1
(
x
′
(
t
)
)
′
′
+
x
′
′
(
t
)
y(t)=b_{2} x^{\prime \prime}(t)+b_{1} x^{\prime}(t)+x(t)\\ a_{1} y(t)=b_{2} a_{1} x^{\prime \prime}(t)+b_{1} a_{1} x^{\prime}(t)+a_{1} x(t) \\ a_{2} y^{\prime}(t) =b_{2}\left(a_{2} x^{\prime \prime}(t)\right)^{\prime}+b_{1}\left(a_{2} x^{\prime}(t)\right)^{\prime}+a_{2} x^{\prime}(t) \\ y^{\prime \prime}(t) =b_{2}\left(x^{\prime \prime}(t)\right)^{\prime \prime}+b_{1}\left(x^{\prime}(t)\right)^{\prime \prime}+x^{\prime \prime}(t)
y(t)=b2x′′(t)+b1x′(t)+x(t)a1y(t)=b2a1x′′(t)+b1a1x′(t)+a1x(t)a2y′(t)=b2(a2x′′(t))′+b1(a2x′(t))′+a2x′(t)y′′(t)=b2(x′′(t))′′+b1(x′(t))′′+x′′(t)
y
′
′
(
t
)
+
a
2
y
′
(
t
)
+
a
1
y
(
t
)
=
b
2
(
x
′
′
(
t
)
+
a
2
x
′
(
t
)
+
a
1
x
(
t
)
)
′
′
+
b
1
(
x
′
′
(
t
)
+
a
2
x
′
(
t
)
+
a
1
x
(
t
)
)
′
+
x
′
′
(
t
)
+
a
2
x
′
(
t
)
+
a
1
x
(
t
)
=
b
2
f
′
′
(
t
)
+
b
1
f
′
(
t
)
+
f
(
t
)
y^{\prime \prime}(t)+a_{2} y^{\prime}(t)+a_{1} y(t) \\ =b_{2}(x^{\prime \prime}(t)+a_{2} x^{\prime}(t)+a_{1} x(t))^{\prime \prime}+b_{1}\left(x^{\prime \prime}(t)+a_{2} x^{\prime}(t)+a_{1} x(t)\right)^{\prime}+x^{\prime \prime}(t)+a_{2} x^{\prime}(t)+a_{1} x(t)\\ =b_{2} f^{\prime \prime}(t)+b_{1} f^{\prime}(t)+f(t)
y′′(t)+a2y′(t)+a1y(t)=b2(x′′(t)+a2x′(t)+a1x(t))′′+b1(x′′(t)+a2x′(t)+a1x(t))′+x′′(t)+a2x′(t)+a1x(t)=b2f′′(t)+b1f′(t)+f(t)
最终结果
y
′
′
(
t
)
+
a
2
y
′
(
t
)
+
a
1
y
(
t
)
=
b
2
f
′
′
(
t
)
+
b
1
f
′
(
t
)
+
f
(
t
)
y^{\prime \prime}(t)+a_{2} y^{\prime}(t)+a_{1} y(t) =b_{2} f^{\prime \prime}(t)+b_{1} f^{\prime}(t)+f(t)
y′′(t)+a2y′(t)+a1y(t)=b2f′′(t)+b1f′(t)+f(t)
离散系统
响应左边激励右边
y
(
k
)
−
(
1
+
a
−
b
)
y
(
k
−
1
)
=
f
(
k
)
y(k)-(1+a-b) y(k-1)=f(k)
y(k)−(1+a−b)y(k−1)=f(k)
左边加法器
x
(
k
)
=
f
(
k
)
−
a
2
x
(
k
−
1
)
−
a
1
x
(
k
−
2
)
x(k)=f(k)-a_{2} x(k-1)-a_{1} x(k-2)
x(k)=f(k)−a2x(k−1)−a1x(k−2)
f
(
k
)
=
x
(
k
)
+
a
2
x
(
k
−
1
)
+
a
1
x
(
k
−
2
)
f(k)=x(k)+a_{2} x(k-1)+a_{1} x(k-2)
f(k)=x(k)+a2x(k−1)+a1x(k−2)
右边加法器
y
(
k
)
=
b
1
x
(
k
)
+
x
(
k
−
2
)
\mathrm{y}(\mathrm{k})=b_{1} \mathrm{x}(\mathrm{k})+\mathrm{x}(\mathrm{k}-2)
y(k)=b1x(k)+x(k−2)
a
2
y
(
k
−
1
)
=
b
1
a
2
x
(
k
−
1
)
+
a
2
x
(
k
−
3
)
a_{2} y(k-1)=b_{1} a_{2} x(k-1)+a_{2} x(k-3)
a2y(k−1)=b1a2x(k−1)+a2x(k−3)
a
1
y
(
k
−
2
)
=
b
1
a
1
x
(
k
−
2
)
+
a
1
x
(
k
−
4
)
a_{1} y(k-2)=b_{1} a_{1} x(k-2)+a_{1} x(k-4)
a1y(k−2)=b1a1x(k−2)+a1x(k−4)
y
(
k
)
+
a
2
y
(
k
−
1
)
+
a
1
y
(
k
−
2
)
=
b
1
[
x
(
k
)
+
a
2
x
(
k
−
1
)
+
a
1
x
(
k
−
2
)
]
+
[
x
(
k
−
2
)
+
a
2
x
(
k
−
3
)
+
a
1
x
(
k
−
4
)
]
=
b
1
f
(
k
)
+
f
(
k
−
2
)
y(k)+a_{2} y(k-1)+a_{1} y(k-2)\\ =b_{1}\left[x(k)+a_{2} x(k-1)+a_{1} x(k-2)\right]+\left[x(k-2)+a_{2} x(k-3)+a_{1} x(k-4)\right]\\ =b_{1} f(k)+f(k-2)
y(k)+a2y(k−1)+a1y(k−2)=b1[x(k)+a2x(k−1)+a1x(k−2)]+[x(k−2)+a2x(k−3)+a1x(k−4)]=b1f(k)+f(k−2)
y
(
k
)
+
a
2
y
(
k
−
1
)
+
a
1
y
(
k
−
2
)
=
b
1
f
(
k
)
+
f
(
k
−
2
)
y(k)+a_{2} y(k-1)+a_{1} y(k-2)=b_{1} f(k)+f(k-2)
y(k)+a2y(k−1)+a1y(k−2)=b1f(k)+f(k−2)
系统的分类
可从多角度观察和分析系统, 将系统分成多种类别。
连续与离散系统
线性与非线性系统
时变与时不变系统
因果与非因果系统
记忆与非记忆系统
稳定与发散系统
连续与离散系统
连续系统:系统的激励是连续信号,响应也是连续信号。
f
(
t
)
,
y
(
t
)
f(t), y(t)
f(t),y(t)
离散系统:系统的激励是离散信号,响应也是离散信号。
f
(
k
)
,
y
(
k
)
f(k), y(k)
f(k),y(k)
混合系统:系统的激励是连续信号, 响应是离散信号; 或反之。
线性与非线性系统(线性性质和分解特性)
满足线性性质(齐次性和可加性)和分解特性的系统为线性系统, 否则为非
线性系统。
f
(
⋅
)
→
系统
T
→
y
(
⋅
)
y
(
⋅
)
=
T
[
f
(
⋅
)
]
f
(
⋅
)
→
y
(
⋅
)
\begin{array}{l|l|rl} f(\cdot) \rightarrow& \text { 系统 } \mathbf{T} & \rightarrow y(\cdot) & \begin{array}{l} y(\cdot)=T[f(\cdot)] \\ f(\cdot) \rightarrow y(\cdot) \end{array} \end{array}
f(⋅)→ 系统 T→y(⋅)y(⋅)=T[f(⋅)]f(⋅)→y(⋅)
齐次性
f
(
⋅
)
→
y
(
⋅
)
aff
⋅
)
→
a
y
(
⋅
)
f(\cdot) \rightarrow y(\cdot) \quad \text { aff } \cdot) \rightarrow a y(\cdot)
f(⋅)→y(⋅) aff ⋅)→ay(⋅)
可加性
f
1
(
⋅
)
→
y
1
(
⋅
)
f
2
(
⋅
)
→
y
2
(
⋅
)
f
1
(
⋅
)
+
f
2
(
⋅
)
→
y
1
(
⋅
)
+
y
2
(
⋅
)
\quad f_{1}(\cdot) \rightarrow y_{1}(\cdot) \quad f_{2}(\cdot) \rightarrow y_{2}(\cdot) \quad f_{1}(\cdot)+f_{2}(\cdot) \rightarrow \mathrm{y}_{1}(\cdot)+\mathrm{y}_{2}(\cdot)
f1(⋅)→y1(⋅)f2(⋅)→y2(⋅)f1(⋅)+f2(⋅)→y1(⋅)+y2(⋅)
线性性质
a
f
1
(
⋅
)
+
b
f
2
(
⋅
)
→
a
y
1
(
⋅
)
+
b
y
2
(
⋅
)
a f_{1}(\cdot)+b f_{2}(\cdot) \rightarrow a y_{1}(\cdot)+b y_{2}(\cdot)
af1(⋅)+bf2(⋅)→ay1(⋅)+by2(⋅)
系统的响应取决于系统的激励
{
f
(
⋅
)
}
\{f(\cdot)\}
{f(⋅)} 和初始状态
{
x
(
0
)
}
,
\{\mathrm{x}(0)\},
{x(0)}, 系统的全响应为:
y
(
⋅
)
=
T
[
{
x
(
0
)
}
,
{
f
(
⋅
)
}
]
\mathrm{y}(\cdot)=T[\{\mathrm{x}(0)\},\{f(\cdot)\}]
y(⋅)=T[{x(0)},{f(⋅)}]
零输入响应
y
z
i
(
⋅
)
=
T
[
{
x
(
0
)
}
,
{
0
}
]
\quad y_{z i}(\cdot)=T[\{x(0)\},\{0\}] \quad
yzi(⋅)=T[{x(0)},{0}]
零状态响应
y
z
s
(
⋅
)
=
T
[
{
0
}
,
{
f
(
⋅
)
}
]
\quad y_{z s}(\cdot)=T[\{0\},\{f(\cdot)\}]
yzs(⋅)=T[{0},{f(⋅)}]
分解特性
y
(
⋅
)
=
y
z
i
(
⋅
)
+
y
z
s
(
⋅
)
\quad y(\cdot)=y_{z i}(\cdot)+y_{z s}(\cdot)
y(⋅)=yzi(⋅)+yzs(⋅)
零输入响应线性
T
[
{
a
x
1
(
0
)
+
b
x
2
(
0
)
}
,
{
0
}
]
=
a
T
[
{
x
1
(
0
)
}
,
{
0
}
]
+
b
T
[
{
x
2
(
0
)
}
,
{
0
}
]
\quad T\left[\left\{a x_{1}(0)+b x_{2}(0)\right\},\{0\}\right]=a T\left[\left\{x_{1}(0)\right\},\{0\}\right]+b T\left[\left\{x_{2}(0)\right\},\{0\}\right]
T[{ax1(0)+bx2(0)},{0}]=aT[{x1(0)},{0}]+bT[{x2(0)},{0}]
零状态响应线性
T
[
{
0
}
,
{
a
f
1
(
t
)
+
b
f
2
(
t
)
}
]
=
a
T
[
{
0
}
,
{
f
1
(
t
)
}
]
+
b
T
[
{
0
}
,
{
f
2
(
t
)
}
]
\quad T\left[\{0\},\left\{a f_{1}(t)+b f_{2}(t)\right\}\right]=a T\left[\{0\},\left\{f_{1}(t)\right\}\right]+b T\left[\{0\},\left\{f_{2}(t)\right\}\right]
T[{0},{af1(t)+bf2(t)}]=aT[{0},{f1(t)}]+bT[{0},{f2(t)}]
例题
(
1
)
y
(
t
)
=
f
(
t
)
+
3
x
(
0
)
f
(
t
)
+
6
x
(
0
)
+
5
(
2
)
y
(
t
)
=
5
∣
f
(
t
)
∣
+
6
x
(
0
)
\begin{array}{ll}(1) y(t)=f(t)+3 x(0) f(t)+6 x(0)+5 & (2) y(t)=5|f(t)|+6 x(0)\end{array}
(1)y(t)=f(t)+3x(0)f(t)+6x(0)+5(2)y(t)=5∣f(t)∣+6x(0)
(3)
y
(
k
)
=
7
f
(
k
)
+
2
x
(
0
)
2
y(k)=7 f(k)+2 x(0)^{2}
y(k)=7f(k)+2x(0)2
(1)$ y_{z i}(t)=6 x(0)+5 \quad y_{z s}(t)=f(t)+5 \quad y(t) \neq y_{z i}(t)+y_{z s}(t) \quad$ 不满足分解特性,非线性系统
(2)
y
z
i
(
t
)
=
6
x
(
0
)
y
z
s
(
t
)
=
5
∣
f
(
t
)
∣
y
(
t
)
=
y
z
i
(
t
)
+
y
z
s
(
t
)
\begin{array}{lll}\text {} y_{z i}(t)=6 x(0) & y_{z s}(t)=5|f(t)| & y(t)=y_{z i}(t)+y_{z s}(t) & \text { }\end{array}
yzi(t)=6x(0)yzs(t)=5∣f(t)∣y(t)=yzi(t)+yzs(t) 满足分解特性
T
[
{
0
}
,
{
a
f
(
t
)
}
]
=
5
∣
a
f
(
t
)
∣
≠
a
y
z
s
(
t
)
T[\{0\},\{a f(t)\}]=5|a f(t)| \neq a y_{z s}(t) \quad
T[{0},{af(t)}]=5∣af(t)∣=ayzs(t) 不满足零状态响应线性特征, 非线性系统
(3)
y
z
i
(
t
)
=
2
x
(
0
)
2
y
z
s
(
t
)
=
7
f
(
k
)
y
(
t
)
=
y
z
i
(
t
)
+
y
z
s
(
t
)
\begin{array}{lll}\text { } y_{z i}(t)=2 x(0)^{2} & y_{z s}(t)=7 f(k) & y(t)=y_{z i}(t)+y_{z s}(t) & \text { }\end{array}
yzi(t)=2x(0)2yzs(t)=7f(k)y(t)=yzi(t)+yzs(t) 满足分解特性
T
[
{
a
x
(
0
)
}
,
{
0
}
]
=
2
(
a
x
(
0
)
)
2
≠
a
y
z
i
(
t
)
T[\{a x(0)\},\{0\}]=2(a x(0))^{2} \neq a y_{z i}(t) \quad
T[{ax(0)},{0}]=2(ax(0))2=ayzi(t) 不满足零输入响应线性特征, 非线性系统
时变与时不变系统
如果激励
f
(
⋅
)
f(\cdot)
f(⋅) 作用于系统的响应为
y
z
s
(
⋅
)
,
y_{z s}(\cdot),
yzs(⋅), 那么当激励延迟一定的时间
t
d
t_{d}
td
(
\left(\right.
( 或
k
d
)
\left.k_{d}\right)
kd) 时, 其零状态响应也延迟同样的时间的系统为时不变系统, 反
之为时变系统。
T
[
{
0
}
,
{
f
(
t
−
t
d
)
}
]
=
y
z
s
(
t
−
t
d
)
T
[
{
0
}
,
{
f
(
k
−
k
d
)
}
]
=
y
z
s
(
k
−
k
d
)
T\left[\{0\},\left\{f\left(t-t_{d}\right)\right\}\right]=y_{z s}\left(t-t_{d}\right)\\ T\left[\{0\},\left\{f\left(k-k_{d}\right)\right\}\right]=y_{z s}\left(k-k_{d}\right)
T[{0},{f(t−td)}]=yzs(t−td)T[{0},{f(k−kd)}]=yzs(k−kd)
(
1
)
y
z
s
(
t
)
=
f
(
t
)
f
(
t
−
5
)
(
2
)
y
z
s
(
k
)
=
k
f
(
k
−
2
)
(
3
)
y
z
s
(
k
)
=
f
(
−
k
)
(
4
)
y
z
s
(
k
)
=
f
(
3
k
)
(1) y_{z s}(t)=f(t) f(t-5)(2) y_{z s}(k)=k f(k-2)(3) y_{z s}(k)=f(-k)(4) y_{z s}(k)=f(3 k)
(1)yzs(t)=f(t)f(t−5)(2)yzs(k)=kf(k−2)(3)yzs(k)=f(−k)(4)yzs(k)=f(3k)
(1)
令
g
(
t
)
=
f
(
t
−
t
d
)
,
令g(t)=f\left(t-t_{d}\right),
令g(t)=f(t−td), 则
T
[
{
0
}
,
{
g
(
t
)
}
]
=
g
(
t
)
g
(
t
−
5
)
=
f
(
t
−
t
d
)
f
(
t
−
t
d
−
5
)
T[\{0\},\{g(t)\}]=g(t) g(t-5)=f\left(t-t_{d}\right) f\left(t-t_{d}-5\right)
T[{0},{g(t)}]=g(t)g(t−5)=f(t−td)f(t−td−5)
y
z
s
(
t
−
t
d
)
=
f
(
t
−
t
d
)
f
(
t
−
t
d
−
5
)
T
[
{
0
}
,
{
f
(
t
−
t
d
)
}
]
=
y
z
s
(
t
−
t
d
)
y_{z s}\left(t-t_{d}\right)=f\left(t-t_{d}\right) f\left(t-t_{d}-5\right) T\left[\{0\},\left\{f\left(t-t_{d}\right)\right\}\right]=y_{z s}\left(t-t_{d}\right)
yzs(t−td)=f(t−td)f(t−td−5)T[{0},{f(t−td)}]=yzs(t−td) 所以是时不变系统
(2)
令
g
(
k
)
=
f
(
k
−
k
d
)
,
{\text { 令}} g(k)=f\left(k-k_{d}\right),
令g(k)=f(k−kd), 则
T
[
{
0
}
,
{
g
(
k
)
}
]
=
k
g
(
k
−
2
)
=
k
f
(
k
−
k
d
−
2
)
T[\{0\},\{g(k)\}]=k g(k-2)=k f\left(k-k_{d}-2\right)
T[{0},{g(k)}]=kg(k−2)=kf(k−kd−2)
y
z
s
(
k
−
k
d
)
=
(
k
−
k
d
)
f
(
k
−
k
d
−
2
)
T
[
{
0
}
,
{
f
(
k
−
k
d
)
}
]
≠
y
z
s
(
k
−
k
d
)
y_{z s}\left(k-k_{d}\right)=\left(k-k_{d}\right) f\left(k-k_{d}-2\right) T\left[\{0\},\left\{f\left(k-k_{d}\right)\right\}\right] \neq y_{z s}\left(k-k_{d}\right)
yzs(k−kd)=(k−kd)f(k−kd−2)T[{0},{f(k−kd)}]=yzs(k−kd) 所以是时变系统
(3)
令
g
(
k
)
=
f
(
k
−
k
d
)
,
令 g(k)=f\left(k-k_{d}\right), \quad
令g(k)=f(k−kd), 则
T
[
{
0
}
,
{
g
(
k
)
}
]
=
g
(
−
k
)
=
f
(
−
k
−
k
d
)
T[\{0\},\{g(k)\}]=g(-k)=f\left(-k-k_{d}\right)
T[{0},{g(k)}]=g(−k)=f(−k−kd)
y
z
s
(
k
−
k
d
)
=
f
(
−
(
k
−
k
d
)
)
T
[
{
0
}
,
{
f
(
k
−
k
d
)
}
]
≠
y
z
s
(
k
−
k
d
)
y_{z s}\left(k-k_{d}\right)=f\left(-\left(k-k_{d}\right)\right) \quad T\left[\{0\},\left\{f\left(k-k_{d}\right)\right\}\right] \neq y_{z s}\left(k-k_{d}\right)
yzs(k−kd)=f(−(k−kd))T[{0},{f(k−kd)}]=yzs(k−kd)
所以是时变系统
(4)
令
g
(
k
)
=
f
(
k
−
k
d
)
,
令g(k)=f\left(k-k_{d}\right),
令g(k)=f(k−kd), 则
T
[
{
0
}
,
{
g
(
k
)
}
]
=
g
(
3
k
)
=
f
(
3
k
−
k
d
)
T[\{0\},\{g(k)\}]=g(3 k)=f\left(3 k-k_{d}\right)
T[{0},{g(k)}]=g(3k)=f(3k−kd)
y
z
s
(
k
−
k
d
)
=
f
(
3
(
k
−
k
d
)
)
T
[
{
0
}
,
{
f
(
k
−
k
d
)
}
]
≠
y
z
s
(
k
−
k
d
)
y_{z s}\left(k-k_{d}\right)=f\left(3\left(k-k_{d}\right)\right) \quad T\left[\{0\},\left\{f\left(k-k_{d}\right)\right\}\right] \neq y_{z s}\left(k-k_{d}\right) \quad
yzs(k−kd)=f(3(k−kd))T[{0},{f(k−kd)}]=yzs(k−kd) 所以是时变系统
若激励之前有变系数, 或反转、展缩变换, 则系统为时变系统
因果与非因果系统
因果系统:当且仅当输入信号激励系统时, 系统才出现零状态响应输出的系统。即,系统的零状态响应不出现于激励之前。反之则为非因果系统。
1.令
t
<
t
0
时
f
(
t
)
=
0
t<t_{0}时f{(t})=0
t<t0时f(t)=0
2.将
t
0
t_0
t0代入式中
若
t
<
t
0
(
t<t_{0}\left(\right.
t<t0( 或
k
<
k
0
)
\left.k<k_{0}\right)
k<k0) 时,
\quad
激励
f
(
t
)
(
f(\mathrm{t}) \quad(
f(t)( 或
f
(
k
)
)
=
0
,
f(\mathrm{k}))=0,
f(k))=0, 则当
t
<
t
0
(
t<t_{0} \quad\left(\right.
t<t0( 或
k
<
k
0
)
\left.k<k_{0}\right)
k<k0) 时,
y
z
s
(
t
)
=
0
(
\mathrm{y}_{\mathrm{zs}}(\mathrm{t})=0\left(\right.
yzs(t)=0( 或
y
z
s
(
k
)
=
0
)
\left.\mathrm{y}_{\mathrm{zs}}(\mathrm{k})=0\right)
yzs(k)=0)
(1)
y
z
s
(
t
)
=
f
(
t
−
1
)
y_{z s}(t)=f(t-1)
yzs(t)=f(t−1)
(2)
y
z
s
(
t
)
=
f
(
t
+
1
)
y_{z s}(t)=f(t+1)
yzs(t)=f(t+1)
(3)
y
z
s
(
t
)
=
f
(
2
t
)
y_{z s}(t)=f(2 t)
yzs(t)=f(2t)
(1) 若
t
<
t
0
时,
f
(
t
)
=
0
,
有
y
z
s
(
t
0
)
=
f
(
t
0
−
1
)
=
0
,
是因果系统
\begin{array}{ll}\text { (1) 若 } t<t_{0} \text { 时, } f(\mathrm{t})=0, & \text { 有 } \mathrm{y}_{\mathrm{zs}}\left(\mathrm{t}_{0}\right)=f\left(\mathrm{t}_{0}-1\right)=0, \text { 是因果系统 }\end{array}
(1) 若 t<t0 时, f(t)=0, 有 yzs(t0)=f(t0−1)=0, 是因果系统
(2) 若
t
<
t
0
时,
f
(
t
)
=
0
,
有
y
z
s
(
t
0
)
=
f
(
t
0
+
1
)
≠
0
,
是非因果系统
\begin{array}{ll}\text { (2) 若 } t<t_{0} \text { 时, } f(\mathrm{t})=0, & \text { 有 } \mathrm{y}_{\mathrm{zs}}\left(\mathrm{t}_{0}\right)=f\left(\mathrm{t}_{0}+1\right) \neq 0, \text { 是非因果系统 }\end{array}
(2) 若 t<t0 时, f(t)=0, 有 yzs(t0)=f(t0+1)=0, 是非因果系统
(3) 若
t
<
t
0
时,
f
(
t
)
=
0
,
有y
z
s
(
t
0
)
=
f
(
2
t
0
)
≠
0
,
是非因果系统
\begin{array}{ll}\text { (3) 若 } t<t_{0} \text { 时, } f(\mathrm{t})=0, & \text { 有y }_{\mathrm{zs}}\left(\mathrm{t}_{0}\right)=f\left(2\mathrm{t}_{0}\right) \neq 0, \text { 是非因果系统 }\end{array}
(3) 若 t<t0 时, f(t)=0, 有y zs(t0)=f(2t0)=0, 是非因果系统 (因为是
1
2
t
0
到
t
0
之
间
\frac{1}{2}t_0到t_0之间
21t0到t0之间?)
记忆与非记忆系统
记忆系统又称为动态系统, 即系统的输出不仅与当前时刻的输入有关, 还
与过去/将来的输入相关。如, 含有电容、电感的系统
非记忆系统又称为即时系统, 即系统的输出仅与当前时刻的输入有关, 与
过去/将来的输入无关。如, 仅还有电阻的简单系统
稳定与发散系统(响应是否有界)
某系统对于有界激励
f
(
⋅
)
f(\cdot)
f(⋅) 产生的零状态响应
y
z
s
(
⋅
)
y_{z s}(\cdot)
yzs(⋅) 也是有界时,称该系统 为有界输入有界输出系统, 简称为稳定系统。即若
∣
f
(
⋅
)
∣
<
∞
,
|f(\cdot)|<\infty,
∣f(⋅)∣<∞, 有
∣
y
z
s
(
⋅
)
∣
<
∞
\left|y_{z s}(\cdot)\right|<\infty
∣yzs(⋅)∣<∞
的系统。否则,称为发散系统, 或不稳定系统。
y
(
t
)
=
f
(
t
−
1
)
+
f
(
t
+
2
)
y(t)=f(t-1)+f(t+2) \quad
y(t)=f(t−1)+f(t+2) 稳定系统
y
(
t
)
=
∫
−
∞
t
f
(
x
)
d
x
发散系统
y(t)=\int_{-\infty}^{t} f(x) d x \quad \text { 发散系统 }
y(t)=∫−∞tf(x)dx 发散系统
f
(
t
)
=
ε
(
t
)
f(t)=\varepsilon(t)
f(t)=ε(t) 有界,
y
(
t
)
=
t
ε
(
t
)
y(t)=t \varepsilon(t)
y(t)=tε(t) 无界