《机器学习第十章 K-Means实践》

from numpy import *
import matplotlib.pyplot as plt

def loadDataSet(fileName):      #general function to parse tab -delimited floats
    dataMat = []                #assume last column is target value
    fr = open(fileName)
    for line in fr.readlines():
        curLine = line.strip().split('\t')
        fltLine = map(float,curLine) #map all elements to float()
        fltLine_ = list(fltLine)
        dataMat.append(fltLine_)
    return dataMat


datMat = mat(loadDataSet('testSet.txt'))
print(datMat)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datMat[:,0].flatten().A[0],datMat[:,1].flatten().A[0])
##plt.show()

def distEclud(vecA, vecB):
    return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)

def randCent(dataSet, k):
    n = shape(dataSet)[1]
    centroids = mat(zeros((k,n)))#create centroid mat
    for j in range(n):#create random cluster centers, within bounds of each dimension
        minJ = min(dataSet[:,j]) 
        rangeJ = float(max(dataSet[:,j]) - minJ)
        centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
    return centroids

pointMat = randCent(datMat,2)
print(pointMat)
ax.scatter(pointMat[:,0].flatten().A[0],pointMat[:,1].flatten().A[0], marker = 'x')
plt.show()

《机器学习第十章 K-Means实践》
随机产生了两个质点

from numpy import *
import matplotlib.pyplot as plt

def loadDataSet(fileName):      #general function to parse tab -delimited floats
    dataMat = []                #assume last column is target value
    fr = open(fileName)
    for line in fr.readlines():
        curLine = line.strip().split('\t')
        fltLine = map(float,curLine) #map all elements to float()
        fltLine_ = list(fltLine)
        dataMat.append(fltLine_)
    return dataMat


datMat = mat(loadDataSet('testSet.txt'))
##print(datMat)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datMat[:,0].flatten().A[0],datMat[:,1].flatten().A[0])
##plt.show()

def distEclud(vecA, vecB):
    return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)

def randCent(dataSet, k):
    n = shape(dataSet)[1]
    centroids = mat(zeros((k,n)))#create centroid mat
    for j in range(n):#create random cluster centers, within bounds of each dimension
        minJ = min(dataSet[:,j]) 
        rangeJ = float(max(dataSet[:,j]) - minJ)
        centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
    return centroids

##pointMat = randCent(datMat,2)
##print(pointMat)
##ax.scatter(pointMat[:,0].flatten().A[0],pointMat[:,1].flatten().A[0], marker = 'x')
##plt.show()

def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
    m = shape(dataSet)[0]
    clusterAssment = mat(zeros((m,2)))#create mat to assign data points 
                                      #to a centroid, also holds SE of each point
    centroids = createCent(dataSet, k)
    clusterChanged = True
    while clusterChanged:
        clusterChanged = False
        for i in range(m):#for each data point assign it to the closest centroid
            minDist = inf; minIndex = -1
            for j in range(k):
                distJI = distMeas(centroids[j,:],dataSet[i,:])
                if distJI < minDist:
                    minDist = distJI; minIndex = j
            if clusterAssment[i,0] != minIndex: clusterChanged = True
            clusterAssment[i,:] = minIndex,minDist**2
        print (centroids)
        for cent in range(k):#recalculate centroids
            ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
            centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean 
    return centroids, clusterAssment


myCentroids,clustAssing = kMeans(datMat,4)
ax.scatter(myCentroids[:,0].flatten().A[0],myCentroids[:,1].flatten().A[0], marker = 'x')
plt.show()

在这里插入图片描述《机器学习第十章 K-Means实践》

ef biKmeans(dataSet, k, distMeas=distEclud):
    m = shape(dataSet)[0]
    clusterAssment = mat(zeros((m,2)))
    centroid0 = mean(dataSet, axis=0).tolist()[0]
    centList =[centroid0] #create a list with one centroid
    for j in range(m):#calc initial Error
        clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
    while (len(centList) < k):
        lowestSSE = inf
        for i in range(len(centList)):
            ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]#get the data points currently in cluster i
            centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
            sseSplit = sum(splitClustAss[:,1])#compare the SSE to the currrent minimum
            sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
            print ("sseSplit, and notSplit: ",sseSplit,sseNotSplit)
            if (sseSplit + sseNotSplit) < lowestSSE:
                bestCentToSplit = i
                bestNewCents = centroidMat
                bestClustAss = splitClustAss.copy()
                lowestSSE = sseSplit + sseNotSplit
        bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) #change 1 to 3,4, or whatever
        bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
        print ('the bestCentToSplit is: ',bestCentToSplit)
        print ('the len of bestClustAss is: ', len(bestClustAss))
        centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]#replace a centroid with two best centroids 
        centList.append(bestNewCents[1,:].tolist()[0])
        clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss#reassign new clusters, and SSE
    return mat(centList), clusterAssment


datMat3 = mat(loadDataSet('testSet2.txt'))
centList,myNewAssments = biKmeans(datMat3,3)
##print(centList)
##fig1 = plt.figure()
##ax1 = fig1.add_subplot(111)
##ax1.scatter(datMat3[:,0].flatten().A[0],datMat3[:,1].flatten().A[0])
##ax1.scatter(centList[:,0].flatten().A[0],centList[:,1].flatten().A[0],marker = 'x')
##plt.show()

《机器学习第十章 K-Means实践》