数据分析笔记——指标构建

先放

需求文档模板

仅供个人自学使用,欢迎各位水友评论交流
Reference:
http://www.itongji.cn/detail?type=99992530
https://www.jianshu.com/p/a8fba3d70b2c
https://www.jianshu.com/p/454611b470a5

指标定义——两种方法

一、从业务领域的需求自上而下的分析。
二、从已有的业务系统中自下而上的分析

  • 定义指标:指标找到了,需要详细的定义指标的各项属性。主要分为业务属性和技术属性。
  • 业务属性包括:指标名称、分类、计算公式、展现方式和查询权限等。
  • 技术属性包括:数据来源、同步字段、同步频率、转换规则等。

构建思路

Q1 :要构建一套指标体系,整体思路是什么

构建指标体系应该“纵向”和“横向”相结合,纵向指的是梳理出分析问题的整个流程,比如对于电商产品,需要分析出用户从进入网站到最终下单的整个流程;对于工具类产品,则需要关注用户使用过程中的体验以及用户流失情况。

有了纵向分析的过程,还需要横向拓展不同的维度,如基于用户画像的人群分类、根据不同业务背景的时间拓展以及业务线的划分。

最后将纵向和横向的结果相结合,就得到了一套完整的指标体系。

Q2:用户行为的核心节点有哪些?如何有针对性地设计指标?

了解用户行为的核心节点,实际上就是纵向分析的过程。互联网公司大多针对C端用户进行分析,这里就以C端用户为例进行介绍。对于C端用户,核心的三个节点是新增、活跃、留存/流失,大多数分析都是围绕这三个节点逬行的,整个流程如下。

Q3:对于活跃用户,应该如何进行相应的指标设计及路径分析?

对于活跃用户,要研究其活跃行为,从而提高用户的体验。针对不同类型的产品,需要进行相应的细分设计。比如对于电商产品,需要关注的是从来访用户到用户最终成功支付的整个流程。

Q4:有了明确的用户行为路径及相关指标后,如何进一步分析?

除了纵向分析,还需要横向分析,横向分析是指对于同一个指标,基于不同的维度进行相应的拓展,常用的维度包括时间维度和用户维度。

Q5:针对时间维度的分析,需要注意的点有哪些?

对于时间维度,常用的分析方法是关注最近一段时间的数据时间的长短要根据业务的具体特性来确定。对于一些高频的App或者功能,通常关注最近1~ 7天的整体数据情况即可,也可以是自然周。对于一些相对低频的App或者功能,则需要将时间拉长,关注最近15天、30天、90天甚至更长时间的整体数据,也可以是自然月、季度甚至自然年。

另外,与时间维度相关的有同比和环比的概念。

因为单纯地关注一段时间的数据并 不能很好地看出趋势情况,需要与之前的数据逬行对比。对于同比和环比的概念,在实际应用中不需要逬行很明确的划分。常用的对比方法是对比当日与上日、本周与上周、本月与上月的数据。对于一些周期性比较强的产品,则需要先确定产品的周期,比如有些产品会受到周末的影响,此时比较合理的对比方法是用本日的数据与上周同一日的数 据进行对比;有些产品会受到大型节假日的影响,此时针对节假日数据,就需要与上一个大型节假日的数据进行对比。

对于一些对实时性要求高的产品,需要将数据指标细化到小时级别。处理后的时间维度分析方法如下。
数据分析笔记——指标构建
除了时间维度,还有一种常用的拓展方法,就是基于用户画像的用户维度进行拓展。用户画像是互联网公司中常用到的分析工具,通过用户画像可以有效了解各个群体的行为情况,也可以基于用户画像拓展出相应的指标。

Q6:列举常用的用户维度拓展方法。

有很多通用的用户维度拓展方法,比如对于用户所在地,可以分为城市、省份,甚 至华东、华南等大区;对于用户的基本属性,可以分为年龄、性别、职业等;对于用户使用的设备情况,可以分为终端类型、客户端版本、厂商、机型等;对于新老用户,也可以拓展出一些指标。对于新用户,需要关注的是用户来源渠道,通常分为自然新增用户、活动新增用户、广告新增用户等渠道,通过对渠道的划分,可以在一定程度上避免 一些大型活动对新增用户分析带来的影响;对于老用户,根据用户的生命周期逬行划分, 通常分为有效用户、活跃用户、忠诚用户、沉睡用户和流失用户,可以对产品整体趋势 有一个清晰的了解。

梳理后的用户维度拓展方法如下。
数据分析笔记——指标构建
以上纵向和横向两个方向讲解了如何构建一套完整的指标体系。在数据分析师岗位面试前,候选人需要对所要面试公司的产品有一定的了解,这样一方面可以进行有针对性的准备;另一方面也可提前构建起一套指标体系。下面通过问题对前面的内容进行总结。

汇总
数据分析笔记——指标构建

步骤

一.归集数据指标

在构建一个数据指标体系前,首先需要将自己产品的相关指标都有什么。在这之前需要明确一个观点,任何产品的终极目标都是使企业或用户价值最大化。可以按照用户生命周期业务流程来归集所有数据指标。
按照一个完整的用户生命周期或业务流程,基本可以将产品所有相关的指标梳理完整。在搜集数据指标时,对每一个业务环节,可以按照规模、质量、转化率和使用率/占比**这几个主要数据评估目的来考虑。例如首次投资环节:

  • 规模指标:人数规模,投资金额规模、投资订单规模、投资次数规模等;
  • 质量指标:注册/实名-投资周期、人均投资金额等;
  • 转化率指标:注册/实名/充值-投资转化率;
  • 使用率/占比指标:首次投资占总投资用户比例等

二.数据指标拆解

归集完产品所涉及的指标后,会发现指标很多。但是在具体的业务中,可能不同业务阶段重点关注的指标不一样。例如渠道推广关注获客成本和转化效果,投资则关注投资金额和投资人数等等。所以对于不同的业务阶段,我们需要挑选出该阶段的核心指标,然后进行拆解,再根据拆解的指标去重点关注
eg:
拉新阶段,我们最关注的是新投资用户的增长情况,所以可以将新用户增长数据指标拆分为:

新投资用户增长=浏览UV/APP**×注册转化率×实名转化率×投资转化率

而投资阶段,我们最关注的是投资金额的增长情况,所以可以将投资金额数据指标拆分为:

投资金额增长=新投资用户数×投资次数×人均每次投资金额+老投资用户×回投率×投资次数×人均每次投资金额

如此一来,我们即知道在不同阶段,需要重点关注和分析哪些核心数据。只有哪些使核心指标效果最大化的细分指标才是最值得我们关注的。

除此以外,不同的部门重点关注的数据也不一样。例如市场推广重点关注渠道推广数据,运营部门重点关注业务增长数据,技术部门重点关注产品稳定性,性能数据。产品部门重点关注功能使用数据、用户画像数据。财务部门重点关注交易数据。

三. 确定数据维度

在确定需要重点关注的数据指标后,就需要对数据指标进行维度的细分,例如:

  • 按时间维度:秒、分、时、天、周、月、季、年
  • 按渠道维度:推广注册、自然注册、活动注册
  • 按用户类型:新老用户、高低净值用户、活跃/流失用户
  • 按终端类型:微信公众号、PC官网、安卓APP、iOS APP
  • 按地区:省、市等

至此一个初略的数据指标体系完整构建起来了。但是还需要在运用中根据实际情况来不断调整优化,毕竟即便是同一产品,不同阶段重点关注的数据都是不一样的。