理解Java中的引用传递和值传递

关于Java传参时是引用传递还是值传递,一直是一个讨论比较多的话题,
有论坛说Java中只有值传递,也有些地方说引用传递和值传递都存在,比较容易让人迷惑。
关于值传递和引用传递其实需要分情况看待,今天学习和分析一下,着急可以先看最后的结论。

1.基本类型和引用类型在内存中的保存

Java中数据类型分为两大类,基本类型和对象类型。相应的,变量也有两种类型:基本类型和引用类型。
基本类型的变量保存原始值,即它代表的值就是数值本身;
而引用类型的变量保存引用值,"引用值"指向内存空间的地址,代表了某个对象的引用,而不是对象本身,
对象本身存放在这个引用值所表示的地址的位置。

基本类型包括:byte,short,int,long,char,float,double,Boolean,returnAddress,
引用类型包括:类类型,接口类型和数组。

相应的,变量也有两种类型:基本类型和引用类型。

2.变量的基本类型和引用类型的区别

基本数据类型在声明时系统就给它分配空间:

1
2
int a;
a=10;//正确,因为声明a时就分配了空间

引用则不同,它声明时只给变量分配了引用空间,而不分配数据空间:

1
2
3
4
5
6
7
Date date;
//执行实例化,开辟数据空间存放Date对象,然后把空间的首地址传给today变量 
//date=new Date();
//如果注释掉上一步操作
//The local variable date may not have been initialized
//也就是说对象的数据空间没有分配
date.getDate();

  

看一下下面的初始化过程,注意"引用"也是占用空间的,一个空Object对象的引用大小大概是4byte

1
2
3
Date a,b; //在内存开辟两个引用空间
a = new Date();//开辟存储Date对象的数据空间,并把该空间的首地址赋给a
b = a; //将a存储空间中的地址写到b的存储空间中

3.引用传递和值传递

这里要用实际参数和形式参数的概念来帮助理解,

值传递:

方法调用时,实际参数把它的值传递给对应的形式参数,函数接收的是原始值的一个copy,此时内存中存在两个相等的基本类型,即实际参数和形式参数后面方法中的操作都是对形参这个值的修改,不影响实际参数的值

引用传递:

也称为传地址。方法调用时,实际参数的引用(地址,而不是参数的值)被传递给方法中相对应的形式参数,函数接收的是原始值的内存地址;
在方法执行中,形参和实参内容相同,指向同一块内存地址,方法执行中对引用的操作将会影响到实际对象

看一个例子:

1
2
3
class MyObj{
    public int b=99;
}

分别传参int和对象类型:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public class ReferencePkValue2 {
     
    public static void main(String[] args) { 
        ReferencePkValue2 t = new ReferencePkValue2(); 
        int a=99
        t.test1(a);//这里传递的参数a就是按值传递 
        System.out.println(a);
         
        MyObj obj=new MyObj(); 
        t.test2(obj);//这里传递的参数obj就是引用传递
        System.out.println(obj.b);
    
     
    public void test1(int a){ 
        a=a++;
        System.out.println(a);
        
     
    public void test2(MyObj obj){ 
        obj.b=100;
        System.out.println(obj.b);
        }
}

输出是:
99         
99            
100          
100           

可以看到,int值没有发生变化,但是在test2方法中对obj类做的修改影响了obj这个对象。

这里要特殊考虑String,以及Integer、Double等几个基本类型包装类,它们都是immutable类型,
因为没有提供自身修改的函数,每次操作都是新生成一个对象,所以要特殊对待,可以认为是和基本数据类型相似,传值操作。

看下面的例子:

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public class ReferencePkValue1 {
    public static void main(String[] args){
        ReferencePkValue1 pk=new ReferencePkValue1();
        //String类似基本类型,值传递,不会改变实际参数的值
        String test1="Hello";
        pk.change(test1);
        System.out.println(test1);
         
        //StringBuffer和StringBuilder等是引用传递
        StringBuffer test2=new StringBuffer("Hello");
        pk.change(test2);
         
        System.out.println(test2.toString());
    }
     
    public void change(String str){
        str=str+"world";
    }
     
    public void change(StringBuffer str){
        str.append("world");
    }
}

输出是:
Hello        
Helloworld             
对String和StringBuffer的操作产生了不同的结果。

4.结论

结合上面的分析,关于值传递和引用传递可以得出这样的结论:

(1)基本数据类型传值,对形参的修改不会影响实参;
(2)引用类型传引用,形参和实参指向同一个内存地址(同一个对象),所以对参数的修改会影响到实际的对象;
(3)String, Integer, Double等immutable的类型特殊处理,可以理解为传值,最后的操作不会修改实参对象。


1.值类型(ValueType)

值类型包括:数值类型,结构体,bool型,用户定义的结构体,枚举,可空类型。

值类型的变量直接存储数据,分配在托管栈中。变量会在创建它们的方法返回时自动释放,例如在一个方法中声明Char型的变量name=’C’,当实例化它的方法结束时,name变量在栈上占用的内存就会自动释放

C#的所有值类型均隐式派生自System.ValueType。

结构体:struct(直接派生于System.ValueType)。
数值类型:整型,sbyte(System.SByte的别 名),short(System.Int16),int(System.Int32),long(System.Int64),byte(System.Byte),ushort(System.UInt16),uint(System.UInt32),ulong(System.UInt64),char(System.Char)。
浮点型:float(System.Single),double(System.Double)。
财务计算的高精度decimal型:decimal(System.Decimal)。 
bool型:bool(System.Boolean的别名)。
用户定义的结构体(派生于System.ValueType)。 
枚举:enum(派生于System.Enum)。

可空类型(派生于System.Nullable<T>泛型结构体,T?实际上是System.Nullable<T>的别名

 

2.引用类型(ReferenceType)

引用类型包括:数组,用户定义的类、接口、委托,object,字符串,null类型,类。

引用类型的变量持有的是数据的引用,数据存储在数据堆,分配在托管堆中,变量并不会在创建它们的方法结束时释放内存,它们所占用的内存会被CLR中的垃圾回收机制释放。 

数组(派生于System.Array) 
用户需定义以下类型: 
类:class(派生于System.Object); 
接口:interface(接口不是一个“东西”,所以不存在派生于何处的问题。接口只是表示一种contract约定[contract])。
委托:delegate(派生于System.Delegate)。 
object(System.Object的别名); 
字符串:string(System.String的别名)。

 

3.值类型与引用类型区别:

 

值类型

引用类型

存储方式

直接存储数据本身

存储的是数据的引用,数据存储在数据堆中

内存分配

分配在栈中的

分配在堆中

效率

效率高,不需要地址转换

效率较低,需要进行地址转换

内存回收

使用完后立即回收

使用完后不立即回收,而是交给GC处理回收

赋值操作

创建一个新对象

创建一个引用

类型扩展

不易扩展,所有值类型都是密封(seal)的,所以无法派生出新的值类型

具有多态的特性方便扩展

实例分配

通常是在线程栈上分配的(静态分配),但是在某些情形下可以存储在堆中

总是在进程堆中分配(动态分配)

 

值类型和引用类型树形结构:

 理解Java中的引用传递和值传递

注:给参数加了fef(out)后,参数是引用传递,这时候传递的是栈地址(指针,引用),否则就是正常的值传递---栈原始数据的拷贝。

 4.内存分配

值类型的实例经常会存储在栈上的。但是也有特殊情况。如果某个类的实例有个值类型的字段,那么实际上该字段会和类实例保存在同一个地方,即堆中。不过引用类型的对象总是存储在堆中。如果一个结构的字段是引用类型,那么只有引用本身是和结构实例存储在一起的(在栈或堆上,视情况而定)。

引用类型在栈中存储一个引用,其实际的存储位置位于托管堆。简称引用类型部署在托管推上。值类型总是分配在它声明的地方:作为字段时,跟随其所属的变量(实例)存储;作为局部变量时,存储在栈上。值类型在内存管理方面具有更好的效率,并且不支持多态,适合用做存储数据的载体;引用类型支持多态,适合用于定义 应用程序的行为。 

注:堆栈(stack)是一种后进先出的数据结构。在内存中,变量会被分配在堆栈上来进行操作。堆(heap)是用于为类型实例(对象)分配空间的内存区域,在堆上创建一个对象,会将对象的地址传给堆栈上的变量(反过来叫变量指向此对象,或者变量引用此对象)。

 5.装箱和拆箱

1)装箱就是将一个值类型转换成等值的引用类型

在堆上为新生成的对象(该对象包含数据,对象本身没有名称)分配内存。

将堆栈上值类型变量的值拷贝到堆上的对象中。

将堆上创建的对象的地址返回给引用类型变量(从程序员角度看,这个变量的名称就好像堆上对象的名称一样)。

2)拆箱就是将一个引用类型转换成等值的值类型

将引用类型变量堆上的值拷贝到栈上面。