第十二讲--可视化和理解卷积神经网络--课时28
Deep Dream
将某层**值作为梯度反向传播回去
-------------------------------------------------------------------------------
feature inversion
用图片在卷积某层的特征去反向传播生成图片
可以看到,初级特征保留的是像素特征,高级特征为语义特征。
---------------------------------------------------------------------------------------------------
texture synthesis : 某同样的纹理生成更大的图片
复杂纹理可以用神经网络来做
将该层所有Gram matrix平均的快速计算: C*H*W = C*(H*W) = F , 则G = F * F.T
将图片的各层Gram matirx记录,然后随机生成图片,计算生成图片与与原始图片Gram matrix之差作为损失函数,迭代生成图片。
高级层代表高级特征(大的纹理)
----------------------------------------------------------------------
Neural style transfer : feature inversion(content image) + texture synthesis(style image)
Fast style transfer: 预训练好固定风格的网络,直接输入内容图片即可