HA集群搭建
Spark高可用:https://blog.****.net/qq_36434219/article/details/80961183
Hadoop和Spark集群搭建:https://blog.****.net/qq_36434219/article/details/80716189
HA集群部署:
主机名 安装的软件 运行的进程
Master01 jdk、hadoop、spark NameNode、DFSZKFailoverController(zkfc)、Master、ResourceManager
Slave05 jdk、hadoop、spark NameNode、DFSZKFailoverController(zkfc)、Master、ResourceManager
Slave01 jdk、hadoop、spark、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain、Worker
Slave02 jdk、hadoop、spark、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain、Worker
Slave03 jdk、hadoop、spark、zookeeper DataNode、NodeManager、Worker
Slave04 jdk、hadoop、spark DataNode、NodeManager、Worker
查找资料所得,说明如下:
1.在hadoop2.0中通常由两个NameNode组成,一个处于active状态,另一个处于standby状态。
Active NameNode对外提供服务,而Standby NameNode则不对外提供服务,
仅同步active namenode的状态,以便能够在它失败时快速进行切换。
hadoop2.0官方提供了两种HDFS HA的解决方案,一种是NFS,另一种是QJM。
这里我们使用简单的QJM。在该方案中,主备NameNode之间通过一组JournalNode同步元数据信息,
一条数据只要成功写入多数JournalNode即认为写入成功。通常配置奇数个JournalNode
这里还配置了一个zookeeper集群,用于ZKFC(DFSZKFailoverController)故障转移,
当Active NameNode挂掉了,会自动切换Standby NameNode为standby状态
2.hadoop-2.2.0中依然存在一个问题,就是ResourceManager只有一个,存在单点故障,
hadoop-2.7.5解决了这个问题,有两个ResourceManager,一个是Active,一个是Standby,状态由zookeeper进行协调
一:修改配置文件
###############################################################################
$HADOOP_HOME/etc/hadoop下面的文件修改
---------------------修改core-site.xml
<configuration>
<!-- 指定hdfs的nameservice为 nns -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://nns/</value>
</property>
<!-- 指定hadoop临时目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/home/ap/pcts/hadoop-2.7.5/tmp/</value>
</property>
<!-- 指定zookeeper地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>Slave01:2181,Slave02:2181,Slave03:2181</value>
</property>
</configuration>
###############################################################################
---------------------修改hdfs-site.xml
<configuration>
<!--指定hdfs的nameservice为nns,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>nns</value>
</property>
<!-- nns下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.nns</name>
<value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.nns.nn1</name>
<value>Master01:9000</value>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.nns.nn1</name>
<value>Master01:50070</value>
</property>
<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.nns.nn2</name>
<value>Slave05:9000</value>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.nns.nn2</name>
<value>Slave05:50070</value>
</property>
<!-- 指定NameNode的edits元数据在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://Slave01:8485;Slave02:8485;Slave03:8485/nns</value>
</property>
<!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/home/ap/pcts/hadoop-2.7.5/journaldata</value>
</property>
<!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.nns</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<!-- 使用sshfence隔离机制时需要ssh免登陆 配置了免密码登录最好也加上-->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
value>/home/hadoop/.ssh/id_rsa</value>
</property>
<!-- 配置sshfence隔离机制超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
</configuration>
###############################################################################
---------------------修改mapred-site.xml
<configuration>
<!-- 指定mr框架为yarn方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
###############################################################################
---------------------修改yarn-site.xml
<configuration>
<!-- 开启RM高可用 -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>
<!-- 指定RM的名字 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!-- 分别指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>Master01</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>Slave05</value>
</property>
<!-- 指定zk集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>Slave01:2181,Slave02:2181,Slave03:2181</value>
</property>
<!--开启故障自动切换-->
<property>
<name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<property>
<!-- 注意:这个地方配置的是对应RM的那台机器,其余配置都一样,这里一定要改成对应的机器-->
<name>yarn.resourcemanager.ha.id</name>
<value>rm1</value>
<description>If we want to launch more than one RM in single node, we need this configuration</description>
</property>
<!--开启自动恢复功能-->
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<!--配置与zookeeper的连接地址-->
<property>
<name>yarn.resourcemanager.zk-state-store.address</name>
<value>Slave01:2181,Slave02:2181,Slave03:2181</value>
</property>
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>Slave01:2181,Slave02:2181,Slave03:2181</value>
</property>
<!--schelduler失联等待连接时间-->
<property>
<name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name>
<value>5000</value>
</property>
<property>
<name>yarn.resourcemanager.address.rm1</name>
<value>Master01:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm1</name>
<value>Master01:8030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm1</name>
<value>Master01:8035</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm1</name>
<!--重复了,导致RM都是standby状态 改为下面的 -->
<name>yarn.resourcemanager.admin.address.rm1</name>
<value>Master01:8033</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>Master01:8088</value>
</property><property>
<name>yarn.resourcemanager.address.rm2</name>
<value>Slave05:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm2</name>
<value>Slave05:8030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm2</name>
<value>Slave05:8035</value>
</property>
<property>
<name>yarn.resourcemanager.admin.rm2</name>
<value>Slave05:8033</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>Slave05:8088</value>
</property>
<property>
<description>Max available memory on each data node.</description>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>4096</value>
</property>
<property>
<description>Max available cores data node.</description>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>8</value>
</property>
<property>
<description>Minimum allocation unit.</description>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>256</value>
</property>
<property>
<description>Max allocation unit.</description>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>4096</value>
</property>
<property>
<description>Minimum increment setting – set to same as min-allocation.</description>
<name>yarn.scheduler.increment-allocation-mb</name>
<value>256</value>
</property>
<property>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>2.5</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
二:测试步骤
###注意:严格按照下面的步骤!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2.1启动zookeeper集群
cd /hadoop/zookeeper-3.4.5/bin/
./zkServer.sh start
#查看状态:一个leader,两个follower
./zkServer.sh status
2.2启动journalnode(分别在在Slave01、Slave02、Slave03上执行)
cd /hadoop/hadoop-2.7.5
snnsn/hadoop-daemon.sh start journalnode
#运行jps命令检验,Slave01、Slave02、Slave03上多了JournalNode进程
2.3格式化HDFS
#在Master01上执行命令:
hdfs namenode -format
#格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里我配置的是../hadoop-2.7.5/tmp,然后将../hadoop-2.7.5/tmp拷贝到Slave05的../hadoop-2.7.5/下。
scp -r tmp/ Slave05:$HOME/$HADOOP_HOME/
2.4格式化ZKFC(在Master01上执行一次即可)
hdfs zkfc -formatZK
2.5启动HDFS(在Master01上执行)
start-dfs.sh
start-yarn.sh
到此,hadoop-2.7.5配置完毕,可以统计浏览器访问:
http://Master01:50070
NameNode 'hadoop01:9000' (active)
http://Slave05:50070
NameNode 'hadoop02:9000' (standby)
kill掉active进程,看另一个是否变为active
#验证RM(这里显示的都是standby,等待下次更新。。。。)
yarn rmadmin -getServiceState rm1 #验证RM
yarn rmadmin -getServiceState rm2 #
RM显示的都是standby,还是因为上面配置有误,配置过程中,遇到的问题基本上都是配置问题!!!!!!